Федеральное агентство связи Уральский технический институт связи и информатики (филиал) ФГБОУ ВО «Сибирский государственный университет телекоммуникаций и информатики» в г. Екатеринбурге (УрТИСИ СибГУТИ)

ООО «НАГ»

Реализация функций термостатирования и контроля температуры на объекте связи по средствам контроллеров серии SNR-ERD

Лизунов Дмитрий Андреевич, руководитель отдела автоматизации и мониторинга, департамента развития продуктов

> Екатеринбург 2023

1 Цель кейса:

1.1 Ознакомиться с оборудованием контроля и управления технологическими параметрами, применяемым на предприятиях телекоммуникационной и ИТ-сферы, на примере устройств серии SNR-ERD.

1.2 Изучить основы эксплуатации оборудования применяемого для автоматического контроля климатических параметров в технологических помещениях и шкафах с телекоммуникационным оборудованием.

2 Требования:

- 2.1 Ноутбук или персональный компьютер;
- 2.2 Операционная систем Windows 7 или старше;
- 2.3 Программный пакет MS Office или аналогичный;
- 2.4 WEB-браузер;
- 2.4 Доступ к сети интернет;
- 2.5 Знание основ инфотелекоммуникационных технологий;
- 2.6 Знания основ теории электрических цепей;
- 2.7 Знание основ инженерной графики;
- 2.8 Знание протокола TCP/IP;
- 2.9 Знание протокола SNMP.

3 Необходимое ПО:

3.1 ПО необходимое для выполнения заданий, расположено по адресу: <u>https://data.nag.wiki/SNR%20ERD/Hakaton%202023/Soft/</u>

4 Исходные данные:

 4.1
 Руководство по эксплуатации к устройству
 SND-ERD-2.3, адресу:

 расположенное
 по
 адресу:

 https://data.nag.wiki/SNR%20ERD/Hakaton%202023/Docs/
 адресу:

4.2 WEB-интерфейс устройства SNR-ERD-2.3 <u>http://87.251.176.36:62080</u>

5 Задания:

Задание 1.

1. Ознакомиться с устройствами серии SNR-ERD, представленными в
соответствующем разделе магазина shop.nag.ru:
https://shop.nag.ru/catalog/00007.avtomatizatsiya-i-monitoring/05629.ustrojstva-
monitoringa?filter_185%5BSNR-ERD%5D=true

2. Изучить каталог и описание устройств, найти все версии устройств «SNR-ERD-2.3» (далее контроллер);

3. Ознакомиться с предоставленным «руководством по эксплуатации» (далее руководство) к устройству SNR-ERD-2.3;

4. Использую ЭВМ (ПК), подключенный к сети интернет и оснащённый WEB-браузером, выполнить подключение к контроллеру по средствам WEB-интерфейса: http://87.251.176.36:62080/;

5. Изучить доступный функционал контроллера и сравнить с представленным в руководстве;

6. Руководствуясь описанием карточек устройств на сайте shop.nag.ru, идентифицировать исполнение контроллера SNR-ERD-2.3 (по типу климатического датчика) к которому выполнено подключение;

7. Подготовить отчёт о проделанной работе.

Отчет должен содержать:

- выполнение всех вышеописанных пунктов;
- краткое описание функционала контроллера, представленного на WEB-интерфейсе;
- анализ отличий между тем, что представлено на WEB-интерфейсе контроллера и тем, что представлено в руководстве по эксплуатации.

Задание 2.

В соответствии с руководством, разработать условную графическую схему коммутации элементов аппаратных элементов контроллера для выполняющей функции «термостат», управление реализации пользовательской нагрузкой. В качестве нагрузки выступит розетка SNRподключённым SMART-DIN С В неё условным климатическим оборудованием. Принцип работы розетки SNR-SMART-DIN представлена на рисунке 1:

Рисунок 1 - Принцип работы розетки SNR-SMART-DIN

Примечание: схема может быть выполнена в любом удобном формате и включена в общий отчёт. На схеме должны быть отражены контакты контроллера к которым подключается внешний исполнительный элемент, уровни управляющего сигнала (U=?), линии коммутации, исполнительный элемент, электро-питающая сеть и потребитель в виде переключаемой нагрузки.

Задание 3.

1. Выполнить конфигурацию функции «термостат» в режиме «Охлаждения», ориентируясь на ранее подготовленный в Задании 1 анализ отличий WEB-интерфейса контроллера. Зафиксировать результат работы в виде скриншотов;

Примечание: функция «охлаждения» должна выполнять запуск условного охлаждающего элемента (кондиционера, вентилятора, приточной вентиляции) при достижении критического значения контролируемой температуры в 38°С, и выполнять отключение данного элемента при температуре 25°С. В нашем кейсе, рассмотрим ситуацию, что в качестве управляющего сигнала выступает логическая 1 (ВЫСОКИЙ уровень);

2. Выполнить конфигурацию функции «термостат» в режиме «Нагрева», ориентируясь на ранее подготовленный в задании 1 анализ отличий WEB-интерфейса контроллера. Зафиксировать результат работы в виде скриншотов;

Примечание: функция «нагрева» должна выполнять запуск условного нагревающего элемента (термопара, радиатор, сплит система) при достижении критического значения контролируемой температуры в 18°С, и выполнять отключение данного элемента при температуре 25°С. В нашем кейсе, рассмотрим ситуацию, что в качестве управляющего сигнала выступает логическая 1 (ВЫСОКИЙ уровень);

3. Подготовить отчёт о проделанной работе.

Отчет должен содержать:

- описание и пояснение проделанных действий при выполнение всех вышеописанных пунктов;
- скриншоты необходимой конфигурации.

Задание 4.

Общие комментарии к заданию 4: в рамках данного задания, эмитировать работу необходимо системы мониторинга сетевой инфраструктуры по средствам SNMP. В процессе выполнения задания, будет осуществлён опрос ряда параметров, наиболее важных в процессе эксплуатации сетевого объекта. В качестве программного обеспечения, выполняющего роль системы мониторинга no средствам *SNMP* предлагается применить ПК и МІВ-браузер. Все пункты задания необходимо фиксировать в отчёте, прилагая скриншоты в качестве подтверждения проделанной работы.

1. Скачать и установить программу MIB-Browser: https://data.nag.wiki/SNR%20ERD/Hakaton%202023/Soft/MIB_Browser_10.0_B uild_3805.zip

2. Скачать актуальную версию MIB-файла: https://data.nag.wiki/SNR%20ERD/SNR-ERD-2.3/MIB/ (руководствоваться подсказками в README и changelog)

3. Настроить программу MIB-Browser в соответствии с рисунками 2, 3, 4.

Address: 0.0.0.0:161 ~	Advanced OID: .1.3			✓ Oper	ations: Get Next 🗸 🌈
SNMP MIBs		Result Table			
R MIB Tree		Name/OID		Value	Type IP:Port
	Advanced Pro	operties of SNMP Agent	×		
	Address	0.0.0.0			
	Port	161			
	Read Community				
	Write Community				
	SNMP Version	1	~		
		<u>^</u>			
		Ok Cancel			
Name	^				
OID					
MIB Syntax					
Access					
Status	~				

Рисунок 2 - Пример конфигурации сетевых реквизитов опрашиваемого объекта по средствам SNMP в ПО MIB-Browser

B	Load MIBs Ctrl+L	Advanced	OID:	.1.3	
	UnLoad MIBs				Result Table
					N N
	Save Session				
	Exit				

Рисунок 3 - Указание пути до загружаемого МІВ-файла в ПО МІВ-Browser

Рисунок 4 - Выбор загружаемого МІВ-файла в ПО МІВ-Browser

4. Выполнить опрос контроллера командой SNMP-Walk начиная с numeric ID: .1.3.6.1.4.1.40418.2.2 (корневой каталог древовидной структуры MIB) по следующим реквизитам:

IP: 87.251.176.36
Port: 62161
Protocol: UDP
Community: public
SNMP V: 1 или 2с
Пример структуры представлен на рисунке 5:

SNMP MIBs								
MIB T	Ггее							
🖨 🔤 is	o.org.dod.internet.private.enterprises.snr.snrErd.snrErd2							
<u>ل</u>	erd2Traps							
	erd2ipConfig							
	erd2outputs							
	erd2inputs							
	erd2measurements							
<u>_</u>	erd2common							
<u>.</u>	erd2Conformance							

Рисунок 5 - Древовидная структура MIB-файла в ПО MIB-Browser

5. В полученном списке целочисленных значений, по описанию OID и текущему значению температуры на WEB-интерфейсе, выявить OID - передающий показания температурного датчика и датчика влажности;

6. Зафиксировать numeric ID данных OID и их типы данных;

7. Объяснить разницу между типами данных применяемых на устройстве исходя из передаваемых значений, внести эту информацию в отчёт. Типы данных обозначены в табличном виде при запросе SNMP-Walk. Пример на рисунке 6:

Value /	Туре		
0	Integer		
0	Integer		
0	Integer		
0.0.0.0	IpAddress		
172.31.228.1	IpAddress		
172.31.228.20	IpAddress		
192.168.15.20	IpAddress		
20	Integer		
35	Integer		
50	Integer		
52	Integer		
DI1	OctetString		
DI2	OctetString		

Рисунок 6 - Типы данных OID в ПО MIB-Browser

8. Выполнить очистку таблицы полученных значений при запросе SNMP-Walk. Способ очистки таблицы представлен на рисунке 7:

~	Operations:	Get Next	~	G C	0
Value		Ty	/pe IF	P:Port	0
					*
					Clear Table
					8
					F

Рисунок 7 - Способ очистки таблицы значений в ПО MIB-Browser

9. Выполнить точечный запрос текущего значения температуры и влажности по ранее обнаруженным OID, командой SNMP-GET. Строка запроса представлена на рисунке 8:

it	Operations	Tools	Bookmarks	Help					
		~	Advanced	OID:	~	Operations:	Get	~	n Go
s	Result Table	1		22 15		f.F.			

Рисунок 8 - Строка запроса в в ПО MIB-Browser

10. Ориентируясь на ранее подготовленный в Задании 1 анализ отличий WEB-интерфейса контроллера ранее, при помощи WEB-интерфейса, изменить текущий режим работы управляемого «выхода» контроллера из режима «термостат» на режим ручного управления;

11. При помощи древовидной системы и описания OID в ПО MIB-Browser, идентифицировать OID отвечающий за ручное управление данным «выходом» по средствам SNMP;

12. Осуществить ручное управление «условной нагрузкой» по средства выполнения команды SET-SNMP (включить и выключить условную нагрузку).

13. Подготовить отчёт о проделанной работе.

Отчет должен содержать:

• описание и пояснение проделанных действий при выполнение всех вышеописанных пунктов.

6 Требуемый результат выполнения задания:

В рамках выполнения всех четырёх заданий, необходимо предоставить подробный отчёт о проделанной работе в составе которого будут:

- подробный отчёт о проделанной работе в рамках всех пунктов заданий, сопровождаемый рисунками;
- анализ различий между предоставленным руководством и интерфейсом устройства (задание 1);
- графическая схема (задание 2);
- скриншоты корректной конфигурации режимов «охлаждения» и «нагрева» (задание 3);
- последовательное выполнение пунктов задания 4.

7 Литература:

Изучение дополнительной литературы для выполнения кейса не требуется. Пояснительную информацию по особенностям взаимодействия с

устройством SNR-ERD-2.3, можно запросить у автора кейса: https://t.me/DmitriyLizunov