
Junos® Fundamentals Series

Control routing information and

influence packet flow through your

Juniper Networks router or switch

by mastering the primary building

blocks of Junos policy, firewall filters,

and policers.

By Jack W. Parks, IV

DAY ONE: CONFIGURING JUNOS
POLICY AND FIREWALL FILTERS

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: CONFIGURING JUNOS POLICY AND
FIREWALLL FILTERS

Pairing routing policy and firewall filters may, at first glance, seem like an odd combina-
tion for a routing book. After all, filters are for security and policy is about manipulating
route attributes and readvertisement.

While route advertisement decisions can impact security, these two topics are more
logically bundled into a single book because of the high degree of similarity in their
Junos configuration syntax. Knowing one simply helps you learn the other, and given
that both are critically important topics in modern IP networks, their synergy should
not be ignored.

Day One: Configuring Junos Policies and Firewall Filters shows how the savvy network
administrator can make unified and robust efficiencies using two similar tools from
their Junos toobox.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:
Describe the features of policy, firewall filters, and policers in Junos.

Understand the differences between policy and firewall filters.

Configure policy, firewall filters, and policers in the Junos CLI.

Create useful policies for your network.

Understand how policy flow and default policy actions work in Junos.

Develop a foundation for advanced routing policy topics.

Create hierarchical policy and chain policy together.

Create routing policies that share or filter routes with other routers in the network.

Understand the configuration as it relates to firewall filters and policers and the benefits

of using them in your network.

“Jack Parks provides clear, concise descriptions and configuration examples to illustrate

basic concepts as well as complex examples that demystify policy and filter operations and

capabilities that are not widely understood. This is your chance to finally understand why

that nested firewall or Boolean grouped policy did not behave as you expected.”

 Harry Reynolds, Author, Senior Test Engineer, Juniper Networks

7100 1333

ISBN 978-1936779369

9 781936 779369

5 1 6 0 0

07100143

Day One: Configuring Junos Policy and

Firewall Filters

By Jack W. Parks, IV

Junos® Fundamentals Series

Chapter 1: Policy and Firewall Filters Introduction 5

Chapter 2: Policy Configuration . 15

Chapter 3: Putting Policy to Work . 37

Chapter 4: Firewall Filter Configuration . 63

Chapter 5: Policer Configuration .83

© 2011 by Juniper Networks, Inc. All rights reserved.

Juniper Networks, the Juniper Networks logo, Junos,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. Junose is a trademark of Juniper Networks,
Inc. All other trademarks, service marks, registered
trademarks, or registered service marks are the property
of their respective owners.

Juniper Networks assumes no responsibility for any
inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise
this publication without notice. Products made or sold by
Juniper Networks or components thereof might be
covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706,
6,459,579, 6,493,347, 6,538,518, 6,538,899,
6,552,918, 6,567,902, 6,578,186, and 6,590,785.

Published by Juniper Networks Books
Author: Jack W. Parks
Technical Reviewers: Peter Van Oene
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
J-Net Community Manager: Julie Wider

About the Author
Jack W. Parks, IV has worked since 1992 in almost every
position known in the realm of IT. After serving eight
years in the United States Air Force, Jack transitioned to
the corporate world and worked in the large Enterprise
and ISP market spaces. Most recently he has focused on
Enterprise Routing and Switching, Service Provider
Routing, MPLS, and VPNs. With a B.S. in Business
Information Systems from John Brown University and
several industry certifications, including CCIE #11685 &
JNCIE-M #666, Jack is currently a Juniper Networks
Systems Engineer based in Atlanta, Georgia.

Author’s Acknowledgments
Many thanks to my technical editor and mentor Peter
Van Oene. Thanks to the Day One team for the
opportunity and encouragement to develop another
book. And to my family: thank you for giving up your
nights and weekends with me so I could finish this
project.

ISBN: 978-1-936779-38-3 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-936779-39-0 (ebook)

Version History: v1 September 2011
 2 3 4 5 6 7 8 9 10 #7100143-en

This book is available in a variety of formats at: www.
juniper.net/dayone.

Send your suggestions, comments, and critiques by email
to dayone@juniper.net.

	 ii	

www.juniper.net/dayone
www.juniper.net/dayone
mailto:dayone@juniper.net

What You Need to Know Before Reading this Book

 � You should have basic knowledge of Junos CLI, its syntax, and its
hierarchy. It is recommended that you have read the Junos Funda-
mental DayOne Series.

 � You should have an understanding of basic packet filtering
principles and policing fundamentals.

 � You should understand the difference between route (prefix)
filtering and packet filtering.

After Reading this Book, You’ll be Able To...

 � Describe the features of policy, firewall filters, and policers in
Junos.

 � Understand the differences between policy and firewall filters.

 � Configure policy, firewall filters, and policers in the Junos CLI.

 � Create useful policies for your network.

 � Understand how policy flow and default policy actions work in
Junos.

 � Develop a foundation for advanced routing policy topics.

 � Create hierarchical policy and chain policy together.

 � Create routing policies that share or filter routes with other routers
in the network.

 � Understand the configuration as it relates to firewall filters and
policers and the benefits of using them in your network.

	 	 iii

	 iv	 	

The Day One Book Series

This book is part of a growing library of Day One books, produced
and published by Juniper Networks Books.

Day One books were conceived to help you get just the information
that you need on day one. The series covers Junos OS and Juniper
Networks networking essentials with straightforward explanations,
step-by-step instructions, and practical examples that are easy to
follow.

The Day One library also includes a slightly larger and longer suite of
This Week books, whose concepts and test bed examples are more
similar to a weeklong seminar.

You can obtain either series, in multiple formats:

 � Download a free PDF edition at http://www.juniper.net/dayone.

 � Get the ebook edition for iPhones and iPads from the iTunes
Store. Search for Juniper Networks Books.

 � Get the ebook edition for any device that runs the Kindle app
(Android, Kindle, iPad, PC, or Mac) by opening your device's
Kindle app and going to the Kindle Store. Search for Juniper
Networks Books.

 � Purchase the paper edition at either Vervante Corporation (www.
vervante.com) or Amazon (www.amazon.com) for between
$12-$28, depending on page length.

 � Note that Nook, iPad, and various Android apps can also view
PDF files.

 � If your device or ebook app uses .epub files, but isn't an Apple
product, open iTunes and download the .epub file from the
iTunes Store. You can now drag and drop the file out of iTunes
onto your desktop and sync with your .epub device.

http://www.vervante.com
http://www.vervante.com
http://www.amazon.com

Chapter 1

Policy and Firewall Filters Introduction

What is Policy? .6

What are Firewall Filters? .6

Quick Comparison of Policy and Firewall Filters . 7

Syntax and Flow of Policy .8

Syntax and Flow of Firewall Filters .11

Summary . 14

	 6	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

An often-heard grumble is that Juniper Networks applies new and
strange definitions to existing networking concepts when discussing
the Junos operating system and its features, two of which are the topic
of this book: policy and firewall filters. The thing is, how Junos
interprets these terms is closely related to the actual industry terminol-
ogy found in documents like RFCs and BCPs, but in your travels with
other operating systems or other networking equipment, you may have
strayed from the open standards that Junos so closely follows.

TIP Don’t worry if you encounter unfamiliar usages and even terminology
as you work through this book – the concepts you need to understand
about Junos policy and firewall filters are provided by using solid
examples all along the way, so you can see the concepts in action and
not just be told about them.

Let’s begin with how the Junos OS defines policy and firewall filters
and how it uses them.

What is Policy?

Policy is used to control the flow of routing information between
routing processes and the routing table. Policy is also used to add,
remove, or modify attributes associated with the routing information,
thereby controlling the size and scope of the routing information
available to a networked device.

In simple terms, policy is what allows static routes to be advertised by
OSPF to its neighbors, or BGP to prepend AS-PATH information to its
peer routers. Any time routing information needs to be shared between
protocols, policy is employed. Filtering information between neighbors
is another function of policy. If there is a requirement to manipulate
the flow of routing information, then policy is the tool to accomplish
that task.

What are Firewall Filters?

Firewall filters are stateless filtering policies used to control the flow of
individual packets. A popular use for firewall filters is to filter, or drop,
packets from the transit data stream.

	 Chapter		1:		Policy	and	Firewall	Filters	Introduction	 7

TIP Still confused about what a firewall filter is? Maybe it would be helpful
if you referred to it by a common industry name – access control list
(ACL).

Don’t be confused by the word “firewall” here. Traditionally you
might think of a firewall as being a specialized networking appliance
that keeps track of flows and blocks unwanted traffic from entering
the network. This assumes that a firewall is stateful, but there are
many types of firewalls and the Junos firewall filter is a stateless packet
filter, and it is not limited to just discarding packets. Packet classifica-
tion, counting, sampling, rate limiting, and logging are other capabili-
ties of a Junos firewall filter.

Quick Comparison of Policy and Firewall Filters

So policies and firewall filters are very similar in syntax, even though
they have different purposes in Junos operation. Policy is used to
control routing information, which indirectly influences packet flow
through the router or switch. Firewall filters affect packet flow directly
by taking action on individual packets as they traverse the router or
switch.

NOTE In Junos, firewall filters are technically policies, which is why they are
presented concurrently in this book as well as in Juniper Networks
Technical Documentation. This book, however, tries to avoid mention-
ing the word “policy” when discussing firewall filters in order to
minimize confusion.

Even though policy and firewall filters are contained under different
configuration stanzas in Junos, the configuration architecture is the
same. It’s the purpose and implementation differences that separate
them. The primary building block of both policy and firewall filters is
the “term.” Functions are grouped into terms and it is those terms that
are evaluated, in sequential order, to determine the outcome of the
policy. Terms contain the match conditions as well as the associated
actions if the match conditions are met.

MORE? If you need a more comprehensive comparison of policy and firewall
filters, then check out Comparison of Routing Policies and Firewall
Filters, at http://www.juniper.net/techpubs/en_US/junos10.4/topics/
reference/general/policy-routing-policies-firewall-filters-comparison.
html.

	 8	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Syntax and Flow of Policy

The beautiful thing about Junos policy is how it can be defined from a
requirement expressed in written or spoken English. It follows the
logical progression of “if” this condition is true “then” take the
following actions.

For example, a simple statement such as “the IP prefix 10.10/16 should
have a metric of 10” can be used to produce the following policy
configuration:

[edit policy-options policy-statement some-test-policy]
jack# show
term plain-english {
 from {
 route-filter 10.10.0.0/16 exact;
 }
 then {
 metric 10;
 accept;
 }
}

It is also possible to translate the desired function of the policy back
into English from the same configuration. This policy reads that if a
prefix matches 10.10/16 then it would set the metric to 10 and accept
the prefix. This is a simple example and a small introduction to policy
so let’s explore the syntax in a little more depth.

TIP Policies are not specific to any particular routing protocol, like BGP or
OSPF. A well-constructed policy may be applied to multiple protocols
simultaneously.

There are two steps to using policy in Junos. The first step is defining
what the policy must do, and the preceding example is an illustration
of such defining. The second step is applying the policy to a routing
protocol to call the policy into action. Understanding how the policy
works when applied to routing protocols is crucial to avoid unintended
consequences – like network disruptions.

TIP Unintended consequences, also known as side effects, are common
when first learning Junos policy. Testing and troubleshooting tools are
discussed later in this book, but for now, know that policy should be
fully vetted before it is used in the network. If you are following along
with this book on a device, use a lab or testbed.

	 Chapter		1:		Policy	and	Firewall	Filters	Introduction	 9

Policy Syntax Components

Policy	Name

The policy name is the topmost container in the Junos syntax and
identifies the entire policy. It’s what’s referenced when applying the
policy to routing protocols. Policy names are user-defined variables in
Junos, and picking a meaningful and descriptive name really helps
identify the policy’s purpose and application.

Policy names are defined under the [policy-options] hierarchy as a
policy-statement:

[edit policy-options]
jack# edit policy-statement some-test-policy

TIP In Junos, user-defined variables may be auto completed in the CLI by
pressing the Tab key. If you are used to the IOS CLI, you might be
inclined to use naming conventions that are short and to the point,
because without tab completion you have to memorize the names in
order to type them in by hand when referencing them. The Junos CLI
allows tab-completion of user-defined variables in the same way as is
done for system variables, thus allowing for more meaningful naming
syntax for policies, term, filters, etc.

Term

Terms group any match conditions and actions together under a
common hierarchy in the configuration. There are two subsections
within a term, the “from” statement and the “then” statement. The
“from” statement is used as the match criteria for a term. The action
that the term will take is under the “then” statement. It’s easy to
discern the difference between the two term components, for example:

[edit policy-options policy-statement some-test-policy]
jack# show
term plain-english {
 from {
 route-filter 10.10.0.0/16 exact;
 }
 then {
 metric 10;
 accept;
 }
}

It is possible, and highly probable, to have more than one match
condition per term, but the action statement follows slightly different

	 10	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

rules. There can be only a single terminating action, but the action
statement can be used to modify several attributes of a prefix at the
same time. For example, a policy term can change the metric of a route
to 10, and add a BGP community, and prepend two AS-PATH objects
to a prefix; however, only one terminating action such as accept, or
reject, or next can be applied to a single term.

NOTE You might notice that Junos policy allows modification of attributes
without terminating the policy chain. This is a significant advantage
over IOS policy, as it allows a Junos router to accomplish what would
normally require very many specific route-maps with a much smaller
set of modular policies.

Policy Flow

The most important thing to remember about policy is that terms are
processed in a top down sequential order. Policy actions fall into two
major categories: flow control actions and modifier actions. Policy
terms that have a particular type of flow control action, called a
terminating action, stop the further processing of the policy for a given
prefix. A terminating action would be to accept or reject a given set of
match criteria.

In Figure 1.1, the prefix 10.10/16 will match Term A and be accepted,
and the prefix 10.10/16 will not be evaluated against Terms B and C.
The continued processing for 10.10/16 is stopped, but additional
prefixes, presumably learned from the same neighbor, are processed
until all of the remaining prefixes have been evaluated against the
policy and the appropriate termination actions are applied.

Term A

Match:
IP Prefix
10.10/16

Action:
Add Metric
10
Accept

Routing Policy

Term A

Term B

Term C

Figure 1.1	 Policy	Flow

	 Chapter		1:		Policy	and	Firewall	Filters	Introduction	 11

Let's apply Figure 1.1’s policy flow in the real world. If a router has ten
routes to be evaluated by the above policy then each one will be checked
against Term A, Term B, and Term C until a match condition is satisfied
and a terminating action is applied or all terms are processed.

Ten routes: 10.10/16, 10.11/16, 10.12/16 … 10.19/16.

Note that 10.10/16 will match Term A and further processing of
10.10/16 will stop with this policy. 10.11/16 will not match Term A so
the next term, which is Term B, will be evaluated, and so on.

Syntax and Flow of Firewall Filters

Now firewall filters are very similar to policy in syntax and flow because
firewall filters are a type of policy. The main difference between them is
that firewall filters act on the packets instead of the routing information.

Let’s show an example where you can see the similarity in syntax. The
following firewall filter matches GRE packets that fall within the
192.168/16 supernet, then counts the packets, under the name sample-
counter, and sends the packets to the bit bucket:

[edit firewall family inet filter test-firewall-filter]
jack# show
term sample-term {
 from {
 source-address {
 192.168.0.0/16;
 }
 protocol gre;
 }
 then {
 count sample-counter;
 discard;
 }
}
term last-term {
 then accept;
}

NOTE A common criticism of Junos firewall filters, as compared to IOS ACLs,
is that Junos firewall filters are more involved to configure. But do not
mistake the CLI output of a given configuration with the amount of
typing required to configure such a feature. The amount of effort
required to configure a simple multiline ACL and a Junos firewall filter is
almost identical. The readability and search capabilities of the Junos CLI
confirm its added value.

	 12	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

In Junos, firewall filters have an explicit default action at the end of all
filters, which is to drop all packets. Cisco IOS users, who are experienced
with ACLs, understand this default behavior and Junos is no different
than IOS ACLs in this regard, which is why the term last-term in the
above example has an action of then accept. It’s the equivalent of the
IOS ACL line: accept ip any any.

Firewall Filter Syntax

Firewall	Filter	Name

The firewall filter name is the topmost container and identifies the entire
access-list. The firewall filter name is what is used to apply the firewall
filter to an interface. Filter names are user-defined variables in Junos.
Picking a meaningful and descriptive name helps identify the firewall
filter’s purpose and application.

In Junos, firewall filters are created under the [firewall] hierarchy. Best
practices dictate that firewall filters should be configured under the
appropriate protocol family, which is the family that the ACL will be
used for. If the access list will be used to filter IP packets then the filter
should be configured under family inet as shown here (for IPv6 they
should be configured under family inet6):

[edit firewall]
jack# show
family inet {
 filter test-firewall-filter {
 term sample-term {
 from {
 source-address {
 192.168.0.0/16;
 }
 protocol gre;
 }
 then {
 count sample-counter;
 discard;
 }
 }
 term last-term {
 then accept;
 }
 }
}

TIP On some Junos platforms, firewall filters can be configured directly under
the firewall stanza without placing them under the [family] hierarchy.

	 Chapter		1:		Policy	and	Firewall	Filters	Introduction	 13

This syntax only exists for backward compatibility and is not available
on newer Junos device platforms. For consistency, it is recommended
that you create all firewall filters under the appropriate family class.

Note that in the preceding example, the name of the firewall filter is
test-firewall filter – far better than something like “100” – and
that firewall filter names are configured under firewall family inet
as a filter.

Term

Terms in a firewall filter are used to group any matching criterion
together for a specific action to be applied. Like the policy term, the
firewall filter term identifies the matching conditions with the “from”
statements, and the actions under the “then” statements:

[edit firewall family inet filter test-firewall-filter]
jack# show
term sample-term {
 from {
 source-address {
 192.168.0.0/16;
 }
 protocol gre;
 }
 then {
 count sample-counter;
 discard;
 }
}
term last-term {
 then accept;
}

Terms can contain multiple match conditions in Junos, but only a
single final action such as accept, reject, or discard. This is a big
distinction between Junos and other network operating systems.
Single line access lists must repeat match conditions for a given action,
while Junos firewall filters allow for the grouping of like match
conditions for a common action.

NOTE Advanced firewall options and syntax are covered in Chapter 4.

Firewall	Filter	Flow

When the Junos OS processes a firewall filter, it does so through a top
down process. As shown in Figure 1.2, Term A is processed first, then

	 14	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Terms B and then Term C. If a match is made in a given term then all
processing stops for that filter.

Term A
Match:
IP Source
192.168/16
Protocol
GRE

Action:
Count
Discard

Firewall Filter

Term A

Term B

Term C

Figure 1.2	 Firewall	Filter	Packet	Processing	Flow

Figure 1.2 illustrates the packet processing flow of a firewall filter. If a
GRE packet with a source IP address of 192.168.1.100 is processed by
the firewall filter, then the packet will be counted and dropped. How-
ever, if a packet with an IP address of 192.180.2.79 is processed by the
filter, then it will not match Term A, but it may match Term B, or Term
C. The point being that the firewall filter is evaluated in a top down
fashion. How this works is taken up in more detail in Chapter 2.

Summary

This chapter served as a primer on Junos policy and firewall filters and
how they differ. The next few chapters dive more deeply into both of
these security features in the Junos OS, but first, it’s important to set
the stage, so to speak.

Policy and firewall filters can become very complex depending on your
network and its usage, but not all policy and filters have to be complex,
as this book shows.

TIP Follow along with the rest of this book directly connected to a Junos
device.

Chapter 2

Policy Configuration

Match Conditions . 16

Actions .28

Policy Evaluation Logic . 31

	 16	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Chapter 1 provided a brief overview of Junos policy, but more discus-
sion is required surrounding the match conditions, actions, and
evaluation logic. There are several complimentary components to
Junos policy that make it a powerful part of your network operation.

Match Conditions

Match conditions are the “if” statements in policy evaluation. They
are not limited to IP prefixes and can be a specific BGP neighbor or an
incoming interface.

From versus To

As discussed in Chapter 1, the “from” clause is the actual match
condition of the policy. Anything contained under the “from” section
represents the match criteria and will be susceptible to the action
definitions of the “then” section.

There is another match statement, the “to” clause, which has the same
matching effects as the “from” clause. As a rule of thumb, using the
“to” clause as match criteria has the same effect as the “from” clause.
There are exceptions, however. The most prevalent use of the “to”
clause is with IS-IS to affect route leaking between IS-IS levels. Paired
with BGP policy, the “to” clause may be used to identify a remote BGP
neighbor.

The corner case uses for the “to” clause only have an effect when
applied to a protocol that understands neighbor relationships or areas
regarding direction. ISIS and BGP both have the ability to use “to” as a
match condition, but only with specific match conditions. The use of
the “to” clause will act as a “from” when used with conditions that do
not have a direction.

Protocol Specific Match Conditions

One of the ways that Junos policy is more vibrant than other network
operating systems is the breadth of the match conditions that are
available under the “from” clause. Policy is protocol independent, but
that doesn’t mean that all of the match conditions can be used with any
type of route. The following tables break down the match conditions
for a given routing protocol.

	 Chapter		2:		Policy	Configuration	 17

Table 2.1	 Match	Conditions	for	Various	Routing	Protocols

Protocol Specific Match Conditions: BGP

Match Condition Name Extended Values Extended Parameters

as-path list contained in brackets as-path name or regex

local-preference n/a n/a

metric n/a n/a

preference n/a n/a

origin n/a n/a

Protocol Specific Match Conditions: ISIS and OSPF (Link State)

Match Condition Name Extended Values Extended Parameters

area (OSPF) n/a n/a

external (OSPF) n/a n/a

level (ISIS) n/a n/a

tag n/a n/a

Protocol Specific Match Conditions: RIP

Match Condition Name Extended Values Extended Parameters

interface list contained in brackets n/a

Protocol Specific Match Conditions: Non-protocol Dependent

Match Condition Name Extended Values Extended Parameters

as-path (static or aggregate) list contained in brackets as-path name or regex

color n/a n/a

community list contained in brackets community name or regex

interface (direct or local) n/a n/a

	 18	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

next-hop list contained in brackets n/a

policy list contained in brackets n/a

prefix-list separate entries n/a

protocol list contained in brackets n/a

rib n/a n/a

route-filter separate entries action

source-address-filter (multicast) separate entries action

MORE? For a detailed look at the match conditions not covered in this book,
see Configuring Match Conditions in Routing Policy Terms at http://
www.juniper.net/techpubs/en_US/junos10.4/topics/usage-guidelines/
policy-configuring-match-conditions-in-routing-policy-terms.html.

Prefix Lists

Prefix lists contain prefixes, and like most Junos configurations, prefix
lists use user-defined names that can be referenced in future configura-
tion stanzas. Prefix lists are a simple and effective configuration device
to group prefixes together – typically those prefixes that represent a
single purpose.

Prefix lists can be used over and over again in different policies, and in
different terms within a particular policy. This can save a lot of typing.
For example, the same prefix list can be used in a routing policy for
OSPF, BGP, as well as be referenced in a firewall filter. It’s nice to have
that flexibility.

TIP It is recommended that you group similar IP prefixes together under a
single prefix list, like web-servers or exchange-servers. It allows the
purpose of the list to be understood at a quick glance. Multiple prefix
lists can be applied to same term.

Here’s a sample Junos syntax of a prefix list:

[edit policy-options]
prefix-list name {
 ip-addresses;
 apply-path path;
}

	 Chapter		2:		Policy	Configuration	 19

NOTE A prefix list is called in policy under the “from” statement.

Routes contained within prefix lists are exact match only. If the route
192.168.1.0/24 is configured in a prefix list then only an exact match
of 192.168.1.0/24 will be considered. Longer prefixes, such as
192.168.1.4/30 and 192.168.1.128/25, will not be considered a match
with respect to the prefix list. And here is an actual example of a prefix
list:

[edit policy-options]
jack# show
prefix-list typical-pl-example {
 192.168.1.0/24;
 172.16.1.0/24;
}

Apply	Path

Prefix lists also have a configuration element named apply path. Apply
path allows you to specify a particular part of the configuration stanza
that contains IP addresses to populate the prefix list itself, as shown
here:

[edit policy-options]
jack# show
prefix-list BGP-Peers-Prefixes {
 apply-path “protocols bgp group <*> neighbor <*>”;
}

This apply-path example takes all of the neighbors defined under the
stanza [protocols bgp] and adds those host addresses to the prefix
list automatically. As you add and delete BGP neighbors, the prefix list
is updated automatically. Not only can prefix lists save you repetitive
typing, but they can save you from typing, period!

Route Filters

The most common way to match IP prefixes in policy is to use the
route-filter statement. Route filters are explicitly configured in a
policy statement under a term. Unlike a prefix list, route filters are not
portable configurations and exist only under the term in which they
were configured. If a route filter needs to be used again it must be
reconfigured under the new term. That being said, a route filter is more
advanced than a prefix list, thanks to the match type for each destina-
tion prefix as well as an optional action. The components of a route
filter syntax are the following:

route-filter destination-prefix match-type <actions>

	 20	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Match	Type

What makes the route filter so powerful is that it can match multiple
destination prefixes in a single line of code thanks to the match type
section of its configuration. The simplest of the match conditions is the
exact keyword, and the most complicated to understand is the through
match type. There are plenty of match conditions in between. Table 2.2
explains the match types and their functions using the destination
prefix 192.168/16 for its examples.

Table 2.2 Match	Type	Functionality

Match Type
Keyword

Keyword Function
Difficulty
Rating

exact
Match the destination prefix exactly as defined. If the prefix
is defined as 192.168/16 then only the 192.168/16 prefix will
satisfy the match condition.

easy

longer

Match every prefix that is longer than the defined prefix but
within the supernet. If 192.168/16 is defined and the longer
match type is configured with it, then all the prefixes that are
more specific, excluding the defined 192.168/16 prefix, are
considered matches. Prefixes such as 192.168.20/24 and
192.168.128/22 are matches because they are a part of the
192.168/16 supernet. The 192.168/16 prefix is excluded
from the match criteria. Think about longer as a greater than
equation.

moderate

orlonger

The orlonger match type is closely related to the match type
longer, but it includes the specified destination-prefix.
192.168/16, 192.168.20/24 & 192.168.128/22 are all
matches when the orlonger match type is used. Think about
orlonger as an equal to or greater than.

moderate

prefix-length-range

The match type prefix-length-range looks simple on the
surface but it can become confusing. The defined destination
prefix sets the major supernet for the match condition and the
prefix range sets the scope for the match condition. The
prefix-length-range is configured similar to /22-/24. The
prefixes 192.168.20/24 and 192.168.128/22 both match, but
192.168.100.128/29 fall outside of the /22-/24 scope and do
not match.

moderate

	 Chapter		2:		Policy	Configuration	 21

through

The match type through can be complicated to understand.
Essentially, through matches the most significant bits of a
given destination prefix and the most significant bits of the
second destination prefix. Through charts a path from one
starting prefix and length to a second prefix and length, with
a single matching prefix per prefix length.

hard

upto

The match type upto works like the orlonger match type but
with a predefined stoping point. If a route filter was
configured for 192.168/16 upto /24, then all prefixes that fall
into the defined range are matches. All prefixes more specific
than /24 do not match (for example, /25-/32).

moderate

If a picture is worth a thousand words, then Figure 2.1, below, illustrates
each of the match type keywords literally described in Table 2.2. The
individual drawings show a radix tree breakdown of the routing table.
Each tree begins with the prefix 192.168.0.0/16 at the top of the tree
with the applied match type. The highlighted area covers the matched
prefixes covered with the match type keyword.

192.168/16 192.168/16 192.168/16

192.168/16 192.168/16 192.168/16

/x

/y

exact orlonger (down to /32) longer (down to /32)

upto /18 prefix-length-range through

Figure 2.1 Match	Type	Functionality	Illustrated

	 22	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Optional	Actions

Route filters also contain an optional action element. This action
component supersedes the term’s action statement, or the “then”
statement. This may cause unwanted behavior in your policy if used
without concern for policy flow. The optional actions available for
route-filters include just about any action available to the policy itself.
If there are route modifiers under the “then” statement in a policy, such
as changing a route metric, and the route filter action is used, then the
metric will not be changed.

TIP If you are studying for your advanced Junos certifications, it would be
wise to understand how route filter optional actions affect the flow of
the policy. You just might be tested on that topic (hint).

Let’s drill down on route filter optional actions for a second. Consider
this:

[edit policy-options]
jack# show
policy-statement some-test-policy {
 term plain-english {
 from {
 route-filter 10.10.0.0/16 exact accept;
 }
 then {
 metric 10;
 accept;
 }
 }
}

The route filter optional action used in this policy is accept, which
terminates the policy flow and further policy actions such as setting the
route metric to a value of 10. Beware of, and be aware of, the unin-
tended consequences of using optional statements.

Prefix List Filters

As the name suggests, prefix list filters provide a nice hybrid option
between the prefix list and the route filter. At the core of the prefix list
filter is the prefix list itself, but it uses the route filter-style match type
and optional actions. While the match type is not as extensive as with
the route filter, it does encompass the most used match types as listed in
Table 2.3. The Junos syntax looks like this:

prefix-list-filter prefix-list-name match-type <actions>

	 Chapter		2:		Policy	Configuration	 23

Table 2.3		 Prefix	List	Filter	Match	Type	Functionality	

Match Type
Keyword

Keyword Function

exact
Match the destination prefix configured within the prefix list exactly as
defined.

longer
Match every prefix in the prefix list that is more specific than defined prefix
but within the supernet. Think about longer as a greater than equation.

orlonger

The orlonger match type is closely related to the match type longer, but it
includes the specified destination-prefix. 192.168/16, 192.168.20/24,
and192.168.128/22 are all matches when the orlonger match type is used.
Think about orlonger as an equal to or greater than.

NOTE Each line in the prefix list is evaluated individually and the match type
is evaluated against each prefix respectively.

Boolean Operations

What happens when multiple match conditions are configured under a
term? How does Junos determine the order of operations and selec-
tion? At its core, policy relies on two Boolean operations: and and or.
A good rule of thumb to differentiate the pair is this: conditions that
are presented in a horizontal orientation are regarded as or; conditions
that are presented vertically are regarded as and. Consider the follow-
ing example:

policy-statement boolean-example {
 term boolean-and {
 from {
 protocol bgp;
 neighbor 1.1.1.1;
 }
 then accept;
 }
 term boolean-or {
 from {
 protocol [bgp ospf direct];
 prefix-list some-prefixes;
 }
 then accept;
 }
}

Here the and and or operations are displayed by term. Reading the
policy and starting with the term boolean-and, a match occurs only

	 24	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

when a route matches both the protocol and the neighbor statements.
A valid match would have to be learned via BGP from the neighbor
1.1.1.1. The second term, boolean-or, matches any routes contained
with the prefix-list some-prefixes, and is learned from the protocol
BGP, or OSPF, or from directly connected interfaces.

TIP Boolean or examples are usually contained between two square
brackets [].

On the other hand, Junos evaluates route filters a bit differently, as a
longest match regardless of order. This is important to remember,
especially if optional actions are configured. The following code
snippet, boolean-route-filter, contains three route filter statements.
Study it and answer this question: What is the outcome if the route
192.168.24.0/24 is evaluated against this policy?

policy-statement boolean-route-filter {
 term boolean-rf {
 from {
 route-filter 172.16.0.0/16 exact;
 route-filter 192.168.0.0/16 exact;
 route-filter 192.168.24.0/24 exact reject;
 }
 then {
 metric 10;
 accept;
 }
 }
}

You might quickly say that the route is accepted with a metric of 10,
but remember, however, that route filters are evaluated by longest
match. The 192.168.24.0/24 prefix would be rejected thanks to the
optional action of reject.

Advanced Boolean Operations

The Junos OS allows for the use of advanced Boolean operators to
assist with policy matching conditions. In general terms, matches occur
with single inputs – like from a specific neighbor and a given set of
prefixes. What if you could create a deeper logic to determine what
constitutes a match and what is rejected? What if you could create
compound match conditions? The answers, of course, are the ad-
vanced Boolean operators: &&, || , and !.

&& - the and operator. It requires at least two of the conditions to be
true, or to match.

	 Chapter		2:		Policy	Configuration	 25

|| - the or operator. This operator ensures that either of the conditions
is true.

! – the not operator. This operator negates a match.

Advanced Boolean operators are not applied within policy but, rather,
the logic is applied to the import and export statements. This pits
policy against policy for a given protocol.

To help visualize this concept, let’s look at some code and step through
the logic process:

[edit]
jack# show policy-options
policy-statement match-172-16 {
 term 1 {
 from {
 route-filter 172.16.0.0/16 orlonger;
 }
 then accept;
 }
 term 2 {
 then reject;
 }
}
policy-statement match-172-17 {
 term 1 {
 from {
 route-filter 172.17.0.0/16 orlonger;
 }
 then accept;
 }
 term 2 {
 then reject;
 }
}
[edit]
jack# show protocols
bgp {
 export (match-172-16 && match-172-17);
}

TIP Don’t confuse the operators () and [].

There are two policies at play in this example. Each policy only accepts
a single prefix range. These policies have been applied to BGP as an
export statement utilizing the && Boolean operator.

	 26	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Understanding	the	Logic

The advanced Boolean logic works by the policies returning a true or
false. A true is returned if a prefix is accepted or encounters the action
next-policy. A false is returned if a prefix encounters an action of reject.

Looking at the preceding example policy-statement match-172-16, any
prefix that matches the 172.16.0.0/16 orlonger will return a value true
because the action is accept. Any prefix outside the 172.16.0.0/16 range
will be rejected returning the value of false.

TIP The final result of the entire policy that uses Boolean operators must be
true too, for the prefix to be accepted.

This first chart shows the logic operator && evaluation.

Policy X Policy Y Policy X && Policy Y

true true true

true false false

false true false

false false false

This second chart shows the logic operator || evaluation.

Policy X Policy Y Policy X || Policy Y

true true true

true false true

false true true

false false false

And this third chart shows the logic operator ! evaluation.

Policy X ! Policy X

true false

false true

Now let’s look at the three operators with respect to our preceding
example policy.

	 Chapter		2:		Policy	Configuration	 27

Examples:	&&

The && operator is referenced under the protocol BGP as an export
statement, and both policies, match-172-16 and match-172-17, must
return a value of true in order for the evaluated policy to be true:

[edit]
jack# show protocols
bgp {
 export (match-172-16 && match-172-17);
}

Using the test prefix 172.16.100.0/24 to evaluate the && policy
expression, the final result is that the prefix is rejected, as listed in this
chart:

Prefix:172.16.100.0/24

Policy match-172-16 Policy match-172-17 && result

True False False

Examples:	||

The || Boolean policy operator is referenced under the protocol BGP as
an export statement. Only one of the policies, match-172-16 or
match-172-17, must return a value of true in order for the evaluated
policy to be true:

[edit]
jack# show protocols
bgp {
 export (match-172-16 || match-172-17);
}

Using the test prefix 172.16.100.0/24 to evaluate the || policy expres-
sion, the final result is that the prefix is rejected, as listed here in this
chart:

Prefix:172.16.100.0/24

Policy match-172-16 Policy match-172-17 || result

True False True

Examples:	!

The test prefix 172.16.100.0/24 is evaluated using the ! policy expres-
sion, and the final result is that the prefix is accepted:

[edit]
jack# show protocols
bgp {
 export (!match-172-17);
}

	 28	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

And listed here in this chart:

Prefix:172.16.100.0/24

Policy match-172-17 ! result

False True

	
Down	the	Rabbit	Hole

Boolean logic doesn’t end with simple examples. Advanced expressions
can also be created. Between grouping policies and applying algorith-
mic order of operations the possibilities for policy creating are almost
limitless. Take for example:

[edit]
jack# show protocols
bgp {
 export ((match-172-17 || match-172-17) !match-172-18);
}

This policy expression matches prefixes that match match-172-16 or
match-172-17 but not match-172-18.

There are plenty more examples of Boolean arithmetic, but they are
beyond the scope of this Day One book. Write the editor in chief at
dayone@juniper.net and request a title devoted to Boolean arithmetic
adventures.

Actions

Policy actions can be divided into two groups: flow control actions and
modifier actions. Flow control actions determine the order in which
terms are processed as each term is evaluated. Modifier actions
manipulate the attributes of the prefixes. Up to this point, this book
has only discussed how to match the interesting prefixes and apply
basic policy actions. It’s time to do something more advanced with all
of the identified routes.

TIP The absence of a “from” or “to” statement in a policy is understood by
Junos as a match all condition. All actions listed under the “then”
statement will be applied to all prefixes.

To help explore the actions of policy, let’s use the following generic
policy called some-test-policy:

[edit policy-options]
jack# show

mailto:dayone@juniper.net

	 Chapter		2:		Policy	Configuration	 29

policy-statement some-test-policy {
 term plain-english {
 from {
 route-filter 10.10.0.0/16 exact;
 }
 then {
 metric 10;
 accept;
 }
 }
 term prefix-length-8 {
 from {
 route-filter 10.0.0.0/8 orlonger;
 }
 then {
 metric 20;
 reject;
 }
 }
}

Flow Control Actions

Policy flow control is defined as a part of the “then” portion of the
configuration and there are terminating actions and flow control actions.

The keywords “accept” and “reject” are considered terminating actions,
and terminating actions stop the further processing of the prefixes within
the context of the policy. In the example policy some-test-policy, the
route 10.10.0.0/16 technically matches both terms plain-english and
prefix-legth-8. Since the processing rules for policy follow a top down
logic, any prefix that matches the first term, plain-english, will be
removed from further processing in the policy by the terminating action
of accept. Likewise, routes other than 10.10.0.0/16 will be passed to the
second term, prefix-length-8, since they do not match the “from”
statement of the term plain-english.

Flow control actions don’t stop the processing of prefixes; they affect the
order of operations within the policy itself. Terms can be skipped, or a
prefix can jump to the next policy in a chain to be evaluated by more
terms.

NOTE There are also default actions that affect the operational flow of policy
when an action statement is not defined. These default actions are
discussed in more detail in Chapter 3.

Table 2.4 defines and describes the terminating and flow control actions
available in policy.

	 30	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Table 2.4 Terminating	and	Flow	Control	Actions

Flow Control Description Terminating or Flow?

accept
Accept the route and propagate it. Stop
processing all other terms and/or policies.

Terminating

default-action accept
Accept the route and override the default
action for the protocol*.

Terminating

reject
Reject the route and do not propagate it. Stop
processing all other terms and/or policies.

Terminating

default-action reject
Reject the route and override the default
action for the protocol*.

Terminating

next term
Go to the next term in the policy, if it is the
last term then move to the next policy-
statement in the chain.

Flow Control

next policy
Go to the next policy in the policy chain. Skip
all remaining terms in the current policy-
statement.

Flow Control

* Protocols have default actions associated with them. Chapter 3 will describe these default behaviors.

Modifier Actions

Modifier actions are responsible for changing the attribute of the routes.
Attributes such as metrics, or adding route tags and BGP communities,
are handled by modifier actions. In the example policy some-test-policy,
the action modifiers shown are specifically for adjusting the metric of the
routes. The metric will be set to a value of 10 or 20 depending on which
term a prefix matches. Table 2.5 lists some of the common modifiers
available in policy, but it is not an all-inclusive list. For that level of
thoroughness, see the current Junos Policy Framework Configuration
Guide at http:www.juniper.net/techpubs/.

Table 2.5 Common	Modifier	Actions

Modifying Action Description

as-path-prepend as-path
Used with BGP to prepend one or more instances of
an AS to a BGP advertisement.

community (+ | add) [names] Add a BGP community to the prefix.

community (– | delete) [names] Delete a BGP community to the prefix.

community (= | set) [names] Replace the BGP communities on a prefix.

	 Chapter		2:		Policy	Configuration	 31

external type metric
Change the OSPF external metric type on a given
prefix.

install-nexthop <strict> lsp lsp-name
Selects a next-hop, among many equal cost next-
hops, for a given lSP and installs that next-hop of the
lSP in the forwarding table.

local-preference value Change the BGP local preference.

metric (add | subtract) number
Change the metric for a given prefix. For BGP,
metric set the MED value.

next-hop (address | discard | next-table routing-table-
name | peer-address | reject | self)

Set the next-hop of a given prefix.

origin value Sets the BGP origin attribute.

preference preference
Changes the route preference (administrative
distance) for a particular route.

tag tag
Assign a numeric value in the tag field of an OSPF,
ISIS, or RIPv2 route.

Policy Evaluation Logic

Junos processes policy in a logical way, starting with the first policy
statement and its first term and continuing in a top down manner until
all policy statements and terms are processed, including the default
policy. Only when a route matches a term that contains a terminating
action does the policy processing stop.

Policy Flow

Policy flows in an ordered manner from top to bottom, working
through each term until a match is encountered and a terminating
action is applied. Let’s view a policy configuration snippet to gain
understanding of how a route is processed by policy.

TIP Use the Day One books on the Junos CLI to improve your CLI skills so
that you can become familiar with, and proficient in, tasks like the
reordering of policy terms.

Single	Policy	Flow	Example

Here, the prefix 10.10.10.0/24 is learned via the external BGP neigh-
bor in your network, and on that BGP neighbor is an applied policy
called test-bgp-policy which contains three terms. Let’s evaluate the
prefix 10.10.10.0/24 against the policy to demonstrate policy flow:

	 32	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

policy-statement test-bgp-policy {
 term 1 {
 from {
 route-filter 10.10.0.0/16 exact accept;
 }
 then {
 metric 25;
 accept;
 }
 }
 term 2 {
 from {
 protocol ospf;
 route-filter 10.10.10.0/24 longer;
 }
 then accept;
 }
 term 3 {
 from {
 protocol bgp;
 route-filter 10.10.0.0/17 orlonger;
 }
 then {
 local-preference 150;
 accept;
 }
 }

}

If you evaluate the prefix 10.10.10.0/24 against policy, you can deduce
the following. The first term—term 1—is actually tricky, as you have to
pay close attention to the terminating action that is placed on the
route-filter itself:

 term 1 {
 from {
 route-filter 10.10.0.0/16 exact accept;
 }
 then {
 metric 25;
 accept;
 }

 }

Term 1’s “then” statement is redundant and the metric will not be
changed on any routes that match the route filter. Since term 1 does not
match our test prefix, term 2 is evaluated next. While the route-filter
portion of the match conditions looks like it may match the
10.10.10.0/24 prefix, the match type is referenced as longer. This
means only prefixes in the 10.10.10.0/24 supernet with a prefix length

	 Chapter		2:		Policy	Configuration	 33

of /25 through /32. Next, as stated in the beginning of this exercise, the
10.10.10.0/24 route was received from a BGP neighbor so the match
condition protocol ospf is problematic:

 term 2 {
 from {
 protocol ospf;
 route-filter 10.10.10.0/24 longer;
 }
 then accept;

 }

The route 10.10.10.0/24 has not matched term 1 or term 2, so it
continues to term 3 for evaluation. The match conditions are an exact
match for the received prefix – it was received from a BGP neighbor
and falls into the 10.10.0.0/17 orlonger range – that satisfies a com-
plete match of all the conditions. Two actions are applied to the route.
The modifying action then local-preference changes the BGP
local-preference attribute to the value of 150. The terminating action
of accept removes the prefix from further policy processing and places
it in the routing table:

 term 3 {
 from {
 protocol bgp;
 route-filter 10.10.0.0/17 orlonger;
 }
 then {
 local-preference 150;
 accept;
 }
 }

POP QUIZ On which term from the above policy would the following route match
be shown in the output?

jack@M120-1a> show route protocol ospf

inet.0: 226 destinations, 640 routes (226 active, 0 holddown, 12 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.10.128/29 *[OSPF/10] 01:00:13, metric 2
 > to 172.25.132.2 via ge-2/0/4.101

Answer: Term 2. The route was learned via OSPF and is within the
range covered by the route filter so it meets both match criteria.

	 34	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Single	Policy	Flow	Summary

Ninety percent of the policies that you’ll come across in the field will be
single policies with multiple terms, and routes are evaluated against the
policy in a top down order. So everything discussed so far is key to
your network operation, and if you are familiar with the policy of
other vendors (i.e., route-maps) this logic and syntax makes sense.

But the power of Junos does not stop at single policies because the OS
can create policy chains by stringing policy statements together. Let’s
examine.

Policy Chains

Policy chaining is the function by which routes are evaluated through
the linking together of several policies in their listed order. Policy
chains are useful when assigning specific functions to discrete policies
and then sequentially chaining all of the policies together to affect the
final selection and manipulation of routes for a given protocol.

MORE? It’s worth mentioning policy chains because of the control that Junos
policy allows to affect the flow of routing information. Policy chains
are an advanced policy topic and this chapter will just scratch the
surface of that topic. It’s recommended that you review the Junos
documentation set to fully understand its capabilities, at http://www.
juniper.net/techpubs/.

Figure 2.2 represents a visual example of the flow of a policy chain and
you can see how it differs from single policy flow.

To augment Figure 2.2 let’s look at an example of how a simple policy
chain is tied to a protocol. In the following code snippet, two policy
statements are working together to affect how routes from different
BGP neighbors are treated, namely modify-attr-bgp and take-action.
Individual policies are chained under a specific protocol’s export or
import statement. Policy order is important.

[edit protocols bgp]
jack# show
export [modify-attr-bgp take-action];

	 Chapter		2:		Policy	Configuration	 35

Policy Statement 1

Term A

Term B

Term C

Policy Statement 2

Term A

Term B

Term C

Protocol Default

Default Action

Figure 2.2	 Policy	Chain	Flow

Let’s review the two policies to gain a better understanding of what the
policy chain does. Notice in the first policy, modify-attr-bgp, that the
policy actions are used only to modify the attributes of the routes
followed by a flow control action. Terminating actions are used for the
second policy, take-action.

[edit policy-options]
jack# show
policy-statement modify-attr-bgp {
 term 1 {
 from neighbor 1.1.1.1;
 then {
 community add vzb;
 next policy;
 }
 }
 term 2 {
 from neighbor 2.2.2.2;
 then {
 community add att;
 next policy;
 }
 }
}
policy-statement take-action {

	 36	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

 term verizon {
 from community vzb;
 then {
 local-preference 150;
 accept;
 }
 }
 term att {
 from community att;
 then accept;
 }
}
community att members 65000:2222;
community vzb members 65000:1111;

What	is	This	Policy	Chain	Doing?

This policy chain was written as a mutual pair and both policies have
to be used together to be effective. The first policy, modify-attr-bgp, is
responsible for the modification of route attributes as they are learned
from two different BGP neighbors. Routes learned from the BGP
neighbor 1.1.1.1 will have the BGP community of 65000:1111 added
and BGP neighbor 2.2.2.2 will have the BGP community of
65000:2222 added. The flow allows for the community to be added
and then the route will be evaluated by the next policy.

The second policy, take-action, looks for the community added in the
first policy and then takes action on the prefixes. The term verizon sets
a local preference of 150 to all routes with the community 65000:1111
and then further processing is terminated with the action accept.
Routes learned from the community of 65000:2222 are accepted as are
those with only the community added to the prefix.

Why would a simple action of adding a community to a route require a
policy chain? It doesn’t. But it does illustrate the modularity of Junos
policy, which allows for the creation of policy templates that may be
reused in many policy chains and in creating smaller router configura-
tions. Simply stated, this example is meant to demonstrate the function
and flow policy chains.

Again, we’re just touching the surface of policy chaining, so be sure to
follow up on your own after finishing this short book.

Chapter 3

Putting Policy to Work

Default Routing Policy and Direction .38

Applying Policy to Routing Protocols . 41

Summary . 60

Testing Policy . 61

	 38	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Now that we have some distance behind us on basic policy definition
and creation, Chapter 3 demonstrates the practical aspects of routing
policy – marrying policy with protocols. While more discussion and
more background theory would build additional understanding, let's
go ahead and get started right away with a real world scenario,
because hands-on application is the real teacher.

Default Routing Policy and Direction

Up to this point, the mechanics and syntax of policy have been the
main subjects of discussion and the fact that policy is used by routing
protocols has only been alluded to. It’s time to provide you with
examples of configuration and demonstrate its effect on the routing of
prefixes.

But before beginning configuring policy on routers there are two points
you need to review: the default routing policy and the policy direction.
Every routing protocol has a default policy that is invoked at the end of
all user-defined policy. It is the final policy and it is implicit. Policy
direction is also important, and in Junos, there are import policies and
export policies.

The Default Policies

The implicit routing polices are necessary to make the default routing
work, otherwise users would need to configure policy every time to
make routing work when it is expected to behave in a standard and
specific way. For example, it’s reasonable to say that most administra-
tors expect BGP to share the BGP routes that a router is aware of. It’s
the default policies that make this happen.

But default polices can be used to augment user-defined policies, and
Table 3.1 lists where the default policy resides in the Junos evaluation
chain. Let's quickly discuss the default policy of each.

BGP	Default	Policy

The BGP default policy is simple: any route learned from a BGP
neighbor will be accepted into the routing table and BGP will advertise
all BGP learned routes that are active in the routing table with other
configured neighbors. Of course, BGP advertising rules apply with
respect to internal BGP and external BGP forwarding rules. Policy is
required to share other routes learned through other protocols.

	 Chapter		3:		Putting	Policy	to	Work	 39

Table 3.1	 	Default	Protocol	Polices

Protocol Default Import Policy Default Export Policy

BGP

Accept all BGP IPv4 routes
learned from configured neighbors
and import into the inet.0 routing
table.

Accept and export active BGP
routes.

OSPF/ISIS

Accept all OSPF/ISIS routes and
import into the inet.0 routing
table. (You cannot override or
change this default policy.)

Reject everything. (The protocol
uses flooding to announce local
routes and any learned routes.)

RIP
Accept all RIP routes learned from
configured neighbors and import
into the inet.0 routing table.

Reject everything. To export RIP
routes, you must configure an
export policy for RIP.

OSPF/ISIS	Default	Policy

OSPF’s default policy is slightly more complicated than BGP’s; since
OSPF uses a link state database (LSDB), OSPF shares routing informa-
tion apart from the routing table. Link state routing requires that all
routers must share native OSPF routes with all other routers and
possess an identical link state database. Policy is only used to affect
routing information in the routing table - the link state database
cannot be modified by policy. OSPF classifies routes into two types:
internally learned and externally learned.

That being said, the shortest calculated path in the LSDB is, by default,
imported into the route table. Interfaces configured under the OSPF
protocol stanza are also present in the LSDB as native OSPF interfaces.
There is no need to create a policy to enable OSPF interface routes.
These interface routes are internally learned by OSPF.

Adding routes learned from other protocols to the LSDB is accom-
plished through an OSPF export policy. If RIP routes need to be shared
(also known as redistributed) with OSPF, then those RIP routes that
are active in the routing table are exported into the OSPF LSDB.
Routes from other protocols, like static, RIP, and BGP, are considered
external OSPF prefixes.

	 40	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

RIP	Default	Policy

RIP learns routes from RIP neighbors, but does not advertise any
routes to RIP neighbors. Policy must be explicitly configured to
advertise any route, including RIP learned routes, to configured
neighbors.

NOTE The default RIP policies illustrate Juniper’s ISP-centric history when
RIP was a great lightweight protocol for provider-to-customer routing.
RIP is a protocol that learns but doesn’t share routes in Junos.

The Policy Direction

If you read Table 3.1 carefully you might ask “importing and exporting
to what?” And that’s a good question. Junos policy is applied in
relation to the route table, also known as the routing information base,
aka the RIB. Import actions affect the routing information from a
specific protocol and neighbor toward the route table. Export actions
affect what is advertised to a given neighbor from the routing table,
default policies not withstanding. Figure 3.1 provides a visual example
of where import and export polices apply in relation to the individual
protocols.

RIBRIB-in RIB-out

LSDB

RIP Neighbor RIP Neighbor

BGP Neighbor BGP Neighbor

OSPF NeighborBGP Neighbor

IMPORT

IMPORT

IMPORT

EXPORT

EXPORT

EXPORT(not really)

Figure 3.1 Import	and	Export	Policy	Directions

	 Chapter		3:		Putting	Policy	to	Work	 41

Notice how OSPF works. The LSDB is separate from the route table.
Policy only affects how routes move between the LSDB and the routing
table and not how they move between OSPF neighbors like the other
protocols. It is important to point out that BGP utilizes two additional
routing tables: RIB-in and RIB-out. RIB-in are the routes received from
a BGP neighbor before routing policy is applied. RIB-out is the route
table after policy is applied and just before BGP transmits the prefixes
to its neighbor.

MORE? There are two commands that are important to remember for viewing
the RIB-in and RIB-out tables: show route receive-protocol bgp
1.1.1.1 displays the information received for a specific BGP peer
before the BGP import policy is applied, and to view the routes after
the BGP export policy is applied, issue the command show route
advertising-protocol bgp 1.1.1.1.

Applying Policy to Routing Protocols

Let’s start demonstrating how policy works so you can practice the
concepts discussed in this book. From here on out, this chapter uses the
topology shown in Figure 3.2. You will note that there are three
routers, West, Central, and East, and each router uses different routing
protocols, so our test topology demonstrates OSPF, RIP, and BGP
policy.

OSPF RIP

BGP

192.168.23/24

192.168.20/24

19
2.

16
8.

1.
1

192.168.12/24

19
2.

16
8.

10
/2

4 19
2.

16
8.

2.
2

19
2.

16
8.

3.
3

19
2.

16
8.

30
/2

4

West Statics
10.10.1/24
10.10.10/24
10.10.11/24

East Statics
10.10.3/24
10.10.30/24

.1 .1

.1

.1 .1.2 .2

Figure 3.2 Chapter	3’s	Topology

	 42	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Network Requirements

The following requirements guide the configurations in this chapter.
The basic protocol configurations have already been completed, and
from here on out the focus will be strictly on the policy required to
achieve the desired results dictated by the requirements:

1. Advertise the static route 10.10.1.0/24 on the West router into
OSPF.

2. Advertise the LAN interface, 192.168.20.0/24, on the Central
router into RIP with a metric of 10, and into OSPF as an OSPF
external type 1.

3. Advertise the Central router’s loopback interface into RIP.

4. Advertise the East router’s LAN, loopback interface, and
10.10.3.0/24 static route into RIP.

5. On the Central router, advertise West’s loopback address from
OSPF to RIP, and East’s loopback address from RIP into OSPF.
Additionally, the transit interface between the East and Central
must be advertised to the OSPF neighbor and the transit interface
between West and Central must be advertised into RIP.

6. Establish a BGP session between the West and East routers using
the loopback addresses and ASN 65000.

7. Advertise the static route 10.10.30.0/24 from the East router to
the West router using BGP with a community of 65000:3333.
Advertise the LAN address, 192.168.30.0/24, using BGP with a
community of 65000:4444.

8. Advertise the static routes 10.10.10.0/24 and 10.10.11.0/24 in
BGP from the West router to the East router using a single
route-filter statement. Utilize a prefix list to advertise the LAN
address 192.168.10.0/24 to the East router.

9. On the West router, strip the received community from the East
router’s LAN advertisement.

Initial	West	Router	Policy	Configuration

First, let’s advertise the static route 10.10.1.0/24 on the West router
into OSPF.

Quickly verify the West router’s configuration of OSPF and neighbor
state, so you can begin tackling the first requirement for the policy:

	 Chapter		3:		Putting	Policy	to	Work	 43

[edit]
jack@west# show protocols
ospf {
 area 0.0.0.0 {
 interface fe-0/0/5.0;
 interface fe-0/0/7.0;
 interface lo0.0 {
 passive;
 }
 }
}

[edit]
jack@west# run show ospf neighbor
Address Interface State ID Pri Dead
192.168.12.1 fe-0/0/7. Full 192.168.2.2 128 33

The configuration and neighbor state look good. The requirement states
that the 10.10.1.0/24 static route must be advertised into OSPF. A check
of the routing table verifies that this route is available and active:

[edit]
jack@west# run show route 10.10.1.0/24

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.1.0/24 *[Static/5] 01:46:09
 Discard

The policy to accomplish this task is simple to configure – create the
policy ospf-export-policy to advertise the static route 10.10.1.0/24
into the LSDB:

[edit]
jack@west# show policy-options
policy-statement ospf-export-policy {
 term advertise-static {
 from {
 protocol static;
 route-filter 10.10.1.0/24 exact;
 }
 then accept;
 }
}
jack@west# show protocols
ospf {
 export ospf-export-policy;
 area 0.0.0.0 {

	 44	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

 interface fe-0/0/5.0;
 interface fe-0/0/7.0;
 interface lo0.0 {
 passive;
 }
 }
}

Verify the results on the Central router after committing the configura-
tion on the West router. The 10.10.1.0/24 shows up as an OSPF
external route:

jack@central> show route 10.10.1.0/24

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.1.0/24 *[OSPF/150] 00:00:51, metric 0, tag 0
 > to 192.168.12.2 via fe-0/0/7.0

Okay, everything looks good so far.

Initial	Central	Router	Policy	Configuration

Now let’s advertise the LAN interface, 192.168.20.0/24, on the
Central router into RIP with a metric of 10, and into OSPF as an OSPF
external type 1.

Requirements 2 and 3 are to be accomplished on the Central router.
For these steps, you need to configure a policy for both RIP and OSPF.
The LAN interface address, 192.168.20.0/24, must be advertised via
RIP with a metric of 10 and into OSPF as an external type 1 (the
default OSPF external type is an external type 2). Then the Central
router’s loopback address needs to be advertised into both RIP and
OSPF.

MORE? The default OSPF external metric type is type 2. Type 2 routes have
fixed metrics that do not increment as the route propagates from router
to router. The cost is determined by the cost from the ASBR to the
destination network, which is usually a static route, with a typical cost
of 1. OSPF external type 1 has a variable metric that accumulates the
link cost as the route propagates away from the ABSR.

Best practice calls for you to verify the Central router to ensure that the
protocols are configured and functioning:

	 Chapter		3:		Putting	Policy	to	Work	 45

[edit]
jack@central# run show ospf neighbor
Address Interface State ID Pri Dead
192.168.12.2 fe-0/0/7.0 Full 192.168.1.1 128 38

[edit]
jack@central# run show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
fe-0/0/6.0 Up 192.168.23.1 224.0.0.9 mcast both 1

OSPF was verified during the previous step and you’ve seen the effect
of routing policy on the West router, so now let’s configure OSPF
policy on the Central router:

[edit]
jack@central# show policy-options
policy-statement ospf-export-policy {
 term adv-lan-address {
 from {
 protocol direct;
 route-filter 192.168.20.0/24 exact;
 }
 then {
 external {
 type 1;
 }
 accept;
 }
 }
}

[edit]
jack@central# show protocols
ospf {
 export ospf-export-policy;
 area 0.0.0.0 {
 interface fe-0/0/7.0;
 interface lo0.0;
 }
}
rip {
 group central {
 neighbor fe-0/0/6.0;
 }
}

	 46	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

With OSPF configured and policy applied, you can check the effect on
the LSDB on the Central router. Let’s look at the LSDB on the Central
router since the LSDB operates autonomously from the routing table
and will immediately show the effects of policy:

 [edit]
jack@central# run show ospf database external extensive
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern 10.10.1.0 192.168.1.1 0x80000002 1148 0x22 0xdf51 36
 mask 255.255.255.0
 Topology default (ID 0)
 Type: 2, Metric: 0, Fwd addr: 0.0.0.0, Tag: 0.0.0.0
 Aging timer 00:40:51
 Installed 00:19:05 ago, expires in 00:40:52
 Last changed 01:06:29 ago, Change count: 1
Extern *192.168.20.0 192.168.2.2 0x80000002 677 0x22 0xc680 36
 mask 255.255.255.0
 Topology default (ID 0)
 Type: 1, Metric: 0, Fwd addr: 0.0.0.0, Tag: 0.0.0.0
 Gen timer 00:38:43
 Aging timer 00:48:43
 Installed 00:11:17 ago, expires in 00:48:43, sent 00:11:17 ago
 Last changed 00:11:17 ago, Change count: 2, Ours

As you can see, two external routes appear in the LSDB. The first route
is from the West router and you can see that it is an external type 2.
The second route is from the Central router. Notice the * that shows
that the route is an external type 1. In order to see the metric increase,
you need to view the route on a different router, like the West router:

[edit]
jack@west# run show route 192.168.20

inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.20.0/24 *[OSPF/150] 00:19:48, metric 1, tag 0
 > to 192.168.12.1 via fe-0/0/7.0

If you remember our list of requirements, they also instruct us to
configure RIP policy on the Central router. So let’s create a policy to
advertise the LAN network into RIP with a metric of 10. Remember,
by default, RIP only receives RIP routes, but never sends anything:
policy is required:

	 Chapter		3:		Putting	Policy	to	Work	 47

 [edit]
jack@central# show policy-options
policy-statement rip-export-policy {
 term adv-lan-address {
 from {
 protocol direct;
 route-filter 192.168.20.0/24 exact;
 }
 then {
 metric 10;
 accept;
 }
 }
}

jack@central# show protocols
ospf {
 export ospf-export-policy;
 area 0.0.0.0 {
 interface fe-0/0/7.0;
 interface lo0.0;
 }
}
rip {
 group central {
 export rip-export-policy;
 neighbor fe-0/0/6.0;
 }
}

With a quick look on the East router, Central’s RIP neighbor, you can
verify that the policy is effective:

[edit]
jack@east# run show route protocol rip

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.20.0/24 *[RIP/100] 00:10:29, metric 11, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
224.0.0.9/32 *[RIP/100] 01:34:49, metric 1
 MultiRecv

The route is being received via RIP and the metric is shown as 11,
which is a hop cost of 1 plus the metric cost of 10 that was set in policy.

	 48	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Advertise	the	Central	Router’s	Loopback	Iinterface	into	RIP

The third listed requirement is to advertise the Central router’s loopback
address into RIP. We have several choices to make at this point and there
are several options available to accomplish this task. We can create a
new policy and create a policy chain, but that seems a bit excessive.
Rereading all of the configuration tasks, nothing seems to require a
policy chain now or in the future. We can add a route filter to the
existing policy. However, that policy term has an action modifier to set
the metric to 10, which is not what we want to happen either. The best
course of action is to use the existing policy and add a new term.

policy-statement rip-export-policy {
 term adv-lan-address {
 from {
 protocol direct;
 route-filter 192.168.20.0/24 exact;
 }
 then {
 metric 10;
 accept;
 }
 }
 term adv-loopback {
 from {
 protocol direct;
 route-filter 192.168.2.2/32 exact accept;
 }
 }
}

The term adv-loopback has been added to the policy rip-export-policy.
An important note about the configuration is that any terms added to an
existing policy are appended to the end of the term list. Order is impor-
tant in policy, but in this case order does not produce adverse effects in
the processing of the policy. Also, a terminating action was added to the
end of the route-filter, which negates the need for a “then” statement.

The updated route table as viewed from the West router.

[edit]
jack@east# run show route protocol rip

inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

	 Chapter		3:		Putting	Policy	to	Work	 49

192.168.2.2/32 *[RIP/100] 00:14:35, metric 2, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
192.168.20.0/24 *[RIP/100] 00:27:42, metric 11, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
224.0.0.9/32 *[RIP/100] 01:52:02, metric 1
 MultiRecv

Initial	East	Router	Policy	Configuration

Now it’s time to advertise the East router’s LAN, loopback interface,
and 10.10.3.0/24 static route into RIP.

The East router, according to requirement four, needs to advertise the
directly attached networks for the loopback interface, LAN interface,
and static route 10.10.3.0/24 into RIP.

[edit]
jack@east# show policy-options
policy-statement rip-export-policy {
 term adv-networks {
 from {
 protocol [static direct];
 route-filter 192.168.3.3/32 exact;
 route-filter 192.168.30.0/24 exact;
 route-filter 10.10.30.0/24 exact;
 }
 then accept;
 }
}

The policy rip-export-policy on the East router is a good example of
different Boolean operations in a single policy. There are two types of
routes, connected and static, listed in the requirements for this router,
and there are two directly connected routes and a single static route
that must be addressed.

The first condition for a match is based on source protocol. The policy
will match routes that are either static routes or directly connected
interfaces. The protocol condition and the route filters narrow the
selection criteria by only accepting routes that match both conditions.
Route filters are the longest match and are not an ordered, top-down
match like an access list.

If you look at the East router’s upstream neighbor, Central, you can
verify the policy is exporting only the three specified prefixes:

	 50	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

[edit]
jack@central# run show route protocol rip

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.30.0/24 *[RIP/100] 00:00:18, metric 2, tag 0
 > to 192.168.23.2 via fe-0/0/6.0
192.168.3.3/32 *[RIP/100] 00:00:18, metric 2, tag 0
 > to 192.168.23.2 via fe-0/0/6.0
192.168.30.0/24 *[RIP/100] 00:00:18, metric 2, tag 0
 > to 192.168.23.2 via fe-0/0/6.0
224.0.0.9/32 *[RIP/100] 00:39:12, metric 1
 MultiRecv

So far, everything is working as expected. Another helpful Junos
capability is the ability to view the outgoing RIP advertisements. The
“neighbor” IP address at the end of the following command is the local
outgoing interface IP address and can be very helpful, especially
without administrative access to the upstream router:

[edit]
jack@east# run show route advertising-protocol rip 192.168.23.2

inet.0: 13 destinations, 13 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.30.0/24 *[Static/5] 02:16:20
 Discard
192.168.3.3/32 *[Direct/0] 02:16:20
 > via lo0.0
192.168.30.0/24 *[Direct/0] 02:14:20
 > via fe-0/0/5.0

This requirement is complete and the desired effects have been accom-
plished with the necessary policy.

Protocol	Redistribution	on	the	Central	Router	

Next up is to advertise West’s loopback address from OSPF to RIP and
East’s loopback address from RIP into OSPF, on the Central router.
Additionally, the transit interface between East and Central must be
advertised to the OSPF neighbor, and the transit interface between
West and Central must be advertised into RIP.

Before moving into BGP policy configuration, you need to share
routing information between OSPF and RIP. BGP typically requires an

	 Chapter		3:		Putting	Policy	to	Work	 51

underlying IGP to establish peering sessions and resolve next-hop
addresses in BGP advertisements. The Central router is a pivotal router
in the topology and is the only router that participates in both IGP
routing protocols.

To satisfy the fifth requirement, you need to modify the existing OSPF
and RIP policies on the Central router to perform a mutual redistribu-
tion of routing information. The West router needs routing knowledge
of the East router’s loopback address and the transit interface between
the Central router and the East router. Inversely, the East router needs
routing knowledge of the West router’s loopback address and the
Central and West router transit interface.Let’s look at the OSPF policy,
with the necessary updates, first:

[edit]
jack@central# show policy-options policy-statement ospf-export-policy
term adv-lan-address {
 from {
 protocol direct;
 route-filter 192.168.20.0/24 exact;
 }
 then {
 external {
 type 1;
 }
 accept;
 }
}
term for-bgp {
 from {
 protocol [rip direct];
 route-filter 192.168.3.3/32 exact;
 route-filter 192.168.23.0/24 exact;
 }
 then accept;
}

A new term was added to the OSPF policy, ospf-export-policy,
named for-bgp. This simple term takes the two networks listed in the
requirements and exports them to the OSPF LSDB.

MORE? It’s easy to forget that the OSPF export statement is used for populat-
ing the OSPF LSDB with non-OSPF prefixes. Unlike BGP and RIP, the
policy is not toward a configured neighbor. The export policy direction
is from the route-table toward the LSDB. The LSDB handles the route
propagation between OSPF routers.

	 52	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

[edit]
jack@central# show policy-options policy-statement rip-export-policy
term adv-lan-address {
 from {
 protocol direct;
 route-filter 192.168.20.0/24 exact;
 }
 then {
 metric 10;
 accept;
 }
}
term loopback {
 from {
 protocol direct;
 route-filter 192.168.2.2/32 exact accept;
 }
}
term for-bgp {
 from {
 protocol [ospf direct];
 route-filter 192.168.1.1/32 exact;
 route-filter 192.168.12.0/24 exact;
 }
 then accept;
}

The RIP policy is similar to the OSPF policy. A new term, for-bgp, was
appended to the existing RIP policy, rip-export-policy, to share the
required routes with the East router.

Here are West’s current OSPF routes:

[edit]
jack@west# run show route protocol ospf

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.2.2/32 *[OSPF/10] 02:56:04, metric 1
 > to 192.168.12.1 via fe-0/0/7.0
192.168.3.3/32 *[OSPF/150] 00:13:46, metric 2, tag 0
 > to 192.168.12.1 via fe-0/0/7.0
192.168.20.0/24 *[OSPF/150] 02:01:02, metric 1, tag 0
 > to 192.168.12.1 via fe-0/0/7.0
192.168.23.0/24 *[OSPF/150] 00:13:46, metric 0, tag 0
 > to 192.168.12.1 via fe-0/0/7.0
224.0.0.5/32 *[OSPF/10] 02:58:53, metric 1
 MultiRecv

	 Chapter		3:		Putting	Policy	to	Work	 53

And East’s current RIP routes:

[edit]
jack@east# run show route protocol rip

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.1.1/32 *[RIP/100] 00:14:50, metric 2, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
192.168.2.2/32 *[RIP/100] 01:22:52, metric 2, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
192.168.12.0/24 *[RIP/100] 00:14:50, metric 2, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
192.168.20.0/24 *[RIP/100] 01:35:59, metric 11, tag 0
 > to 192.168.23.1 via fe-0/0/7.0
224.0.0.9/32 *[RIP/100] 00:44:07, metric 1
 MultiRecv

The requirement has been satisfied by the recent configuration updates.
The specified routing information is now available to the East and
West routers. BGP can now be configured thanks to the shared reach-
ability information.

BEST PRACTICE This Day One book uses a simple network topology. In real networks,
single routers seldom perform mutual route redistribution between
protocols. Multiple routers sharing routing information between
protocols can create routing loops or blackholes thanks to differing
protocol preferences. Although an explanation of how to do so is
beyond the scope of this book, it is recommended that you use the tag
attribute to prevent the reintroduction of routing information back
into the originating protocol.

BGP	Configuration	on	East-West	Routers

Our next requirement, number six on the list of nine, is to establish a
BGP session between the West and East routers using the loopback
addresses and ASN 65000.

In order to use BGP policy, the routers must have active BGP sessions.
According to the requirement, a BGP session must be established
between the East and West routers. Using the new routing information
from the previous step, let’s configure BGP between the loopback
addresses of the East and West Routers and use ASN 65000.

	 54	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Here’s West’s BGP configuration:

[edit]
jack@west# show protocols bgp
group east-west {
 type internal;
 local-address 192.168.1.1;
 neighbor 192.168.3.3;
}

And East’s BGP configuration:

[edit]
jack@east# show protocols bgp
group east-west {
 type internal;
 local-address 192.168.3.3;
 neighbor 192.168.1.1;
}

Let’s verify that the BGP session is established between the East and
West routers:

[edit]
jack@west# run show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 0 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
192.168.3.3 65000 3 4 0 0 33 0/0/0/0 0/0/0/0

As you can see, BGP is established. There is no exchange of routing
information at this time since there is a lack of policy. The default
export policy for BGP is only to advertise other active BGP routes. The
active/received/accepted/damped field shows 0/0/0/0. The remaining
tasks will focus on BGP policy.

BEST PRACTICE It is strongly suggested that you be as specific as possible in policy
without requiring finely-detailed terms for every single route. To do
this, try reducing the policy down to the least common denominator.
Route filters are a great way to narrow down to a specific supernet, but
also use additional controls like a protocol match condition.

	 Chapter		3:		Putting	Policy	to	Work	 55

East	Router	BGP	Policy	Configuration

We’re already at the seventh requirement on our list! How time flies.
Now let’s advertise the static route 10.10.30.0/24 from the East router
to the West router using BGP with a community of 65000:3333.
Advertise the LAN address, 192.168.30.0/24, using BGP with a
community of 65000:4444.

The goal of this task is to configure the East router’s BGP policy to
advertise the static route 10.10.30.0/24 with the community of
65000:3333 and the LAN address 192.168.30.0/24 with a community
of 65000:4444.

The first thing that must be done is to define the communities. Com-
munities referenced in policy are user variables. In Junos policy,
communities cannot be added to policy as native numeric variables,
they must be defined under policy-options.

It is recommended that you define the community variables first. This
way the communities can be tab-completed by the CLI when creating
the policy. The chance of misconfiguration, or a configuration that will
not commit, could occur if the community is defined after the policy is
created.

Remember, define the variables – then you can reference the variables.
Like so:

community east-lan members 65000:4444;
community east-static members 65000:3333;

Next, you can construct the policy to meet the requirements:

jack@east# show policy-options
policy-statement bgp-export-policy {
 term adv-static {
 from {
 protocol static;
 route-filter 10.10.30.0/24 exact;
 }
 then {
 community add east-static;
 accept;
 }
 }
 term adv-lan {
 from {
 protocol direct;
 route-filter 192.168.30.0/24 exact;
 }

	 56	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

 then {
 community add east-lan;
 accept;
 }
 }
}

Finally, the policy is applied to the BGP group east-west as an export
policy:

[edit]
jack@east# show protocols bgp
group east-west {
 type internal;
 local-address 192.168.3.3;
 export bgp-export-policy;
 neighbor 192.168.1.1;
}

If you look at the West router, you can see that it is receiving the two
prefixes from the East router:

[edit]
jack@west# run show route protocol bgp

inet.0: 17 destinations, 17 routes (17 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.30.0/24 *[BGP/170] 00:01:12, localpref 100, from 192.168.3.3
 AS path: I
 > to 192.168.12.1 via fe-0/0/7.0
192.168.30.0/24 *[BGP/170] 00:01:12, localpref 100, from 192.168.3.3
 AS path: I
 > to 192.168.12.1 via fe-0/0/7.0

To verify that the communities were applied to the BGP advertisements
and that the West router is receiving the communities, you have to take
a detailed look at the prefixes. For the sake of brevity in this book, let’s
look at a single route:

[edit]
jack@west# run show route protocol bgp 10.10.30.0/24 detail

inet.0: 17 destinations, 17 routes (17 active, 0 holddown, 0 hidden)
10.10.30.0/24 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 6

	 Chapter		3:		Putting	Policy	to	Work	 57

 Source: 192.168.3.3
 Next hop type: Router, Next hop index: 555
 Next hop: 192.168.12.1 via fe-0/0/7.0, selected
 Protocol next hop: 192.168.3.3
 Indirect next hop: 14c43fc 262142
 State: <Active Int Ext>
 Local AS: 65000 Peer AS: 65000
 Age: 3:05 Metric2: 2
 Task: BGP_65000.192.168.3.3+179
 Announcement bits (2): 0-KRT 5-Resolve tree 1
 AS path: I
 Communities: 65000:3333
 Accepted
 Localpref: 100
 Router ID: 192.168.3.3

You can see the communities in boldface. This task is complete.

West	Router	BGP	Policy	Configuration

Next on our list is to advertise the static routes 10.10.10.0/24 and
10.10.11.0/24 in BGP from the West router to the East router using a
single route-filter statement. Utilize a prefix-list to advertise the LAN
address 192.168.10.0/24 to the East router.

The final requirements for this section are completed on the West
router. One goal is to advertise the two static routes, 10.10.10.0/24
and 10.10.11.0/24 , using a single route filter. The LAN network
192.168.10.0/24 must be advertised from BGP using a prefix-list.
Additionally, the community needs to be stripped off of the East
router’s LAN network advertisement. Our policy configuration will
begin with an export policy to advertise the networks defined in the
requirements, and then finish with an import policy to strip the
community off of the advertisement.

BEST PRACTICE It is recommended that you define the user variables that will be
referenced in policy before creating the policy.

Let’s follow best practice and define the user variables:

[edit]
jack@west# show policy-options
prefix-list lan-addresses {
 192.168.10.0/24;
}
community all members *:*;

	 58	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Now create the policy required to advertise the required prefixes:

[edit]
jack@west# show policy-options
prefix-list lan-addresses {
 192.168.10.0/24;
}
policy-statement bgp-export-policy {
 term adv-statics {
 from {
 protocol static;
 route-filter 10.10.10.0/23 longer;
 }
 then accept;
 }
 term adv-lan-address {
 from {
 protocol direct;
 prefix-list lan-addresses;
 }
 then accept;
 }
}

Notice the use of a single route ºfilter to match both static routes,
10.10.10.0/24 and 10.10.11.0/24. The match type of longer only
matches on prefixes that are more specific than a /23. Other match
types could be used to accomplish the same results.

Let’s verify the effectiveness of the policy by checking the received BGP
routes on the East router:

[edit]
jack@east# run show route protocol bgp

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.10.0/24 *[BGP/170] 00:05:53, localpref 100, from 192.168.1.1
 AS path: I
 > to 192.168.23.1 via fe-0/0/7.0
10.10.11.0/24 *[BGP/170] 00:01:22, localpref 100, from 192.168.1.1
 AS path: I
 > to 192.168.23.1 via fe-0/0/7.0
192.168.10.0/24 *[BGP/170] 00:05:53, localpref 100, from 192.168.1.1
 AS path: I
to 192.168.23.1 via fe-0/0/7.0

	 Chapter		3:		Putting	Policy	to	Work	 59

Strip	the	Community	from	the	East	Router’s	LAN	
Advertisement

Finally our last requirement is due on the West router, to strip the
received community from the East router’s LAN advertisement

The East router is receiving the three routes via BGP identified in the
requirements section. To remove the community from the East router
LAN prefix on the West router you create an import policy. The policy
bgp-import-policy is shown here and applied to the BGP group
east-west:

[edit]
jack@west# show policy-options
policy-statement bgp-import-policy {
 term strip-community {
 from {
 protocol bgp;
 route-filter 192.168.30.0/24 exact;
 }
 then {
 community delete all;
 accept;
 }
 }
 term bgp {
 from protocol bgp;
 then accept;
 }
}
[edit]
jack@west# show protocols bgp
group east-west {
 type internal;
 local-address 192.168.1.1;
 import bgp-import-policy;
 export bgp-export-policy;
 neighbor 192.168.3.3;
}

There are two commands that are useful to show the effects of this
policy.

First, if you look at the route table for the 192.168.30.0/24 route, you
should see the absence of any community. The RIB-in should still see
the incoming prefix with the community attached. Remember from the
policy direction discussion earlier in this chapter that BGP has a RIB-in

	 60	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

and RIB-out table that contains the prefixes before policy is applied.
This is extremely useful for troubleshooting when you don’t have
administrative control of a neighboring router. So from the route table
on the West router, issue the following command:

[edit]
jack@west# run show route 192.168.30.0/24 detail

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
192.168.30.0/24 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Next-hop reference count: 6
 Source: 192.168.3.3
 Next hop type: Router, Next hop index: 555
 Next hop: 192.168.12.1 via fe-0/0/7.0, selected
 Protocol next hop: 192.168.3.3
 Indirect next hop: 14c43fc 262142
 State: <Active Int Ext>
 Local AS: 65000 Peer AS: 65000
 Age: 55:59 Metric2: 2
 Task: BGP_65000.192.168.3.3+179
 Announcement bits (2): 0-KRT 5-Resolve tree 1
 AS path: I
 Accepted
 Localpref: 100
 Router ID: 192.168.3.3

And the second command is issued from the RIB-in on the West router:

[edit]
jack@west# run show route receive-protocol bgp 192.168.3.3 192.168.30.0/24 detail

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
* 192.168.30.0/24 (1 entry, 1 announced)
 Accepted
 Nexthop: 192.168.3.3
 Localpref: 100
 AS path: I
 Communities: 65000:4444

Summary

The application of policy available in Junos is a powerful tool for
sharing network information. Policy is the universal way, across
protocols, to advertise and filter the routes shared between routers.
Consistent implementation limits the learning curve and accelerates
the deployment of routers in the network.

	 Chapter		3:		Putting	Policy	to	Work	 61

TIP Policy in the Junos OS is universal in its implementation, unlike other
networking vendors where the command set is fragmented between
distribute-lists, access-lists, route-maps, and the redistribute syntax.

Testing Policy

In the real world, it is difficult to make changes to production routers,
especially to routing policy that may trigger convergence, outages, or
blackholes. Junos has another tool up its sleeve that is helpful for
testing a policy before it is applied to a protocol.

The command is test policy. The two variables that must be supplied
to the command syntax are the policy name and a destination prefix
that you want to test against the policy, as shown here with the CLI
help prompt:

jack@west> test policy bgp-export-policy ?
Possible completions:
 <prefix> Destination prefix

WARNING! The test command only works with routes that are active in the routing
table (inet.0). If a route is non-existent, invalid, or rejected by applied
policy then the test policy command will not return a result.

To demonstrate the test policy command, let’s use the West router and
and the existing policy bgp-export-policy. The first test will verify the
prefix 10.10.10.0/24 against the policy:

jack@west> test policy bgp-export-policy 10.10.10.0/24

inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.10.0/24 *[Static/5] 06:56:02
 Discard

Policy bgp-export-policy: 1 prefix accepted, 0 prefix rejected

An active match is displayed as an accepted prefix. This means there is
a positive match in the policy with the terminating action of accept:

jack@west> test policy bgp-export-policy 11.11.11.0/24

Policy bgp-export-policy: 0 prefix accepted, 0 prefix rejected

jack@west>

	 62	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

If a prefix does not match the policy —meaning no terminating action
is applied— then the match count will show no prefixes accepted or
rejected. Only if a terminating action of reject is present in a policy
will the rejected prefix count increment.

TIP Along with testing individual routes against policy, you can submit the
entire active routing table by specifying 0/0 as the destination prefix,
which is extremely useful in validating things like external BGP
advertisement policies when you are interested in understanding which
routes may be advertised prior to activating a given policy.

Chapter 4

Firewall Filter Configuration

Firewall Filter Syntax . 64

Match Criteria . 67

Policers . 73

Actions . 74

Firewall Evaluation Logic . .78

Summary .82

	 64	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Firewall filters share a common feel and syntax with Junos policy, but
there are important distinctions.

The first thing to note is that firewall filters are used to affect traffic
transiting the router. Policy, if you remember from the previous
chapters, is used to affect the learning and sharing of prefixes in
relation to routing protocols. Firewall filters are stateless packet filters.

You may also be familiar with an industry term used to describe
firewall filters: access control list (ACL). This chapter covers the syntax
of firewall filters by breaking down the core components: match
conditions, policing, and firewall actions, and concludes with a
discussion of the evaluation logic used for the processing of packets
within a firewall filter. Along the way the chapter will point out other
key distinctions in tandem with syntax examples.

NOTE Firewall filters are compiled and added to the forwarding table allow-
ing the filters to operate at line rate. Juniper hardware can also discard
packets at line rate without impacting the forwarding performance.
Try that with your other network vendors’ hardware.

Firewall Filter Syntax

In order to properly construct a firewall filter, you must observe a few
requirements. First, firewall filters are created under a specific protocol
family like IPv4, for example. Second, filter terms are used to aggregate
match conditions to the corresponding packet filtering actions.

Now, let’s dig into the components of properly constructed firewall
filters. Here’s a sample firewall filter syntax (explanations of the
components of the filter to follow):

[edit firewall]
 family family-name {
 filter filter-name {
 accounting-profile name;
 interface-specific;
 physical-interface-filter;
 term term-name {
 filter filter-name;
 from {
 match-conditions;
 }
 then {
 action;
 action-modifiers;

	 Chapter		4:		Firewall	Filter	Configuration	 65

 }
 }
 }
 }
}

The Protocol Family

The protocol family is used to determine which packet headers a Junos
device inspects to apply the filter conditions and actions. The protocol
family is defined with the family <family-name> statement. Junos
supports the following protocol families when constructing firewall
filters.

Protocol Family Junos Firewall Family-name

IPv4 inet

IPv6 inet6

MPLS mpls

VPLS vpls

Circuit Cross Connects ccc

Bridge (aka vlan) **MX only bridge

Filter Name

Enabling users to define names for policies, filters, and terms differen-
tiates Junos from other network operating systems. Firewall filters are
another element in Junos that is user defined. The named filter is the
top-most container that represents a given stateless packet filter. It is
the filter name that will be applied on interfaces enforcing the filtering
policy.

Terms

Just as in Junos policy, terms are used to group match conditions so
that a specific filter action can be applied to the packet. Multiple match
conditions can exist under a single term, but only a single final action
may be applied per term. Terms are user-defined variables.

	 66	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

BEST PRACTICE Firewall terms can be ordered and reordered without deleting the
firewall filter, editing the filter, and pasting the filter back into the
configuration. Use the insert command to reorder terms.

Terms can be similar to the line numbers of an ACL. However, they are
ultimately much more powerful than an ACL. In real world environ-
ments, traditional ACLs can be consolidated into just a few terms, thus
shortening long configuration files and identifying intended functions
through a user-defined term name by grouping similar actions together.

WARNING The default action for a term is to accept, or permit a packet matching
the criteria in the “from” statement. This differs from the default
action for a filter, which is an explicit reject-all, dropping all traffic that
does not match any terms within a firewall filter.

Filter Application

Defining a firewall filter is only part of the necessary configuration
required to make it work because the firewall filter must be applied
elsewhere in the Junos configuration. Firewall filters may be applied to:

 � Physical Interfaces

 � Logical Interfaces

 � Routing Interfaces

 � Routing Instances

Direction is also important in the application of a firewall filter. The
firewall is evaluated based on the applied direction. To have the filter
evaluate a packet entering an interface, the packet filter must be
applied as an input filter. If you wish for a packet to be evaluated as it
leaves an interface, then the filter is applied as an output filter.

Filters can be applied as a chain of filters, similar to a policy chain, by
using input-list or output-list. This is helpful if you have the standard
filter that must be applied to all interfaces and additional filters for a
given enforcement point.

	 Chapter		4:		Firewall	Filter	Configuration	 67

Match Criteria

The match criteria in firewall filters are determined by the from state-
ment under a given term. Just about any component of an IP packet
header may be used to match upon. The match criteria in firewall filters
are more straightforward than the matching criteria of policy. The
criteria are slightly different between the protocol families, like IPv4 and
IPv6, as the header information is different between the protocols.

MORE? This Day One book only focuses on the IPv4 protocol family in this
Day One book. For more information on the match conditions for other
protocol families please reference the Firewall Filter and Policer Con-
figuration Guide in the current Junos release documentation suite at
http://www.juniper.net/techpubs/.

But there are also common match conditions that may be used to
facilitate packet matching for all protocol types, namely:

 � Numeric and Text Value Matching

 � Prefix Matching

 � Bit-field Matching

Let’s review each of the common match conditions before focusing on
IPv4 protocol matching.

Numeric and Text Value Matching

A numeric matching is based on a number and a text matching uses a
text synonym to represent a numeric value. Matches can be configured
as a single value or as a range of values. Values may also be combined in
a list.

Single Value Example:

source-port 80; source-port http;

Range of values:

Destination-port 30000-39999;

List of values:

Source-port [http https 25 53 1812-1813]

Note: Values in a list are treated as OR.

http://www.juniper.net/techpubs/en_US/junos11.2/information-products/topic-collections/config-guide-firewall-filter/config-guide-firewall-policer.pdf
http://www.juniper.net/techpubs/en_US/junos11.2/information-products/topic-collections/config-guide-firewall-filter/config-guide-firewall-policer.pdf

	 68	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Table 4.1	 Common	Text	Values	and	Their	Associated	Numeric	Value:

Used For Text Synonym with Numeric Values

Ports

afs (1483), bgp (179), biff (512), bootpc (68), bootps (67), cmd (514),
cvspserver (2401), dhcp (67), domain (53), eklogin (2105), ekshell (2106),
exec (512), finger (79), ftp (21), ftp-data (20), http (80), https (443),
ident (113), imap (143), kerberos-sec (88), klogin (543), kpasswd (761),
krb-prop (754), krbupdate (760), kshell (544), ldap (389), ldp (646),
login (513), mobileip-agent (434), mobilip-mn (435), msdp (639), netbios-
dgm (138), netbios-ns (137), netbios-ssn (139), nfsd (2049), nntp (119),
ntalk (518), ntp (123), pop3 (110), pptp (1723), printer (515),
radacct (1813), radius (1812), rip (520), rkinit (2108), smtp (25),
snmp (161), snmptrap (162), snpp (444), socks (1080), ssh (22),
sunrpc (111), syslog (514), tacacs (49), tacacs-ds (65), talk (517),
telnet (23), tftp (69), timed (525), who (513), or xdmcp (177)

Class of Service
(DSCP)

af11 (10), af12 (12), af13 (14)

af21 (18), af22 (20), af23 (22)

af31 (26), af32 (28), af33 (30)

af41 (34), af42 (36), af43 (38)

ef (46)

ICMP-code

parameter -problem: ip-header-bad (0), required-option-missing (1)

redirect: redirect-for-host (1), redirect-for-network (0), redirect-for-tos-
and-host (3), redirect-for-tos-and-net (2)

time-exceeded: ttl-eq-zero-during-reassembly (1), ttl-eq-zero-during-
transit (0)

unreachable: communication-prohibited-by-filtering (13), destination-
host-prohibited (10), destination-host-unknown (7), destination-network-
prohibited (9), destination-network-unknown (6), fragmentation-
needed (4), host-precedence-violation (14), host-unreachable (1),
host-unreachable-for-TOS (12), network-unreachable (0), network-
unreachable-for-TOS (11), port-unreachable (3), precedence-cutoff-in-
effect (15), protocol-unreachable (2), source-host-isolated (8), source-
route-failed (5)

	 Chapter		4:		Firewall	Filter	Configuration	 69

ICMP-Type

echo-reply (0), echo-request (8), info-reply (16), info-request (15),
mask-request (17), mask-reply (18), parameter-problem (12),
redirect (5), router-advertisement (9), router-solicit (10), source-
quench (4), time-exceeded (11), timestamp (13), timestamp-reply (14),
or unreachable (3)

Protocol Numbers

ah (51), dstopts (60), egp (8), esp (50), fragment (44), gre (47), hop-by-
hop (0), icmp (1), icmp6 (58), icmpv6 (58), igmp (2), ipip (4), ipv6 (41),
ospf (89), pim (103), rsvp (46), sctp (132), tcp (6), udp (17), or
vrrp (112)

Prefix Matching

Prefix matching is typically the core match condition for most packet
filters. Most firewall filters are concerned with allowing or blocking
packets that originate from, or are destined for, a specific network. Junos
firewall filters provide several methods for matching prefixes.

TIP Prefix matching in Junos uses the network address followed by the
prefix length. This differs from other vendor’s packet filter implementa-
tions that rely on the use of a prefix followed by the subnet mask.

Single prefixes:

source-address 192.168.0.0/16;

Multiple prefixes:

source-address {
 192.168.0.0/16;
 172.16.0.0/12;
}

Prefix lists:

source-prefix-list {
prefix-list1;
prefix-list2;
}

NOTE Prefix lists and multiple prefix listings under a term are not order
dependent. Junos evaluates the prefixes by longest match. This is the
same behavior as with Junos policy.

	 70	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Noncontiguous	Prefix	Matching

Also known as Discontiguous Subnet Masks in other vendors’ operat-
ing systems, the Noncontiguous Prefix references multiple prefixes that
are not adjacent to each other based on normal supernetting rules. For
example, the prefix 192.168.0.0/23 is comprised of two /24’s:
192.168.0.0/24 and 192.168.1.0/24. To steal a concept from a classic
CCIE question: What if you need to match only the odd subnets in a
given prefix range? The answer lies in the use of noncontiguous prefix
matching. The example shown below can be used to match odd
prefixes only:

destination-address 192.168.1.0/0.0.254.0;

Excluding	Prefixes

Prefixes can be excluded from the match conditions under a term.
There may be situations where a supernet should be referenced and
specific networks should be excluded from the configured action. This
is accomplished by specifying the except keyword after the prefix:

destination-address 192.168.0.0/16;
destination-address 192.168.100.0/24 except;

All packets that are destined to any address in the 192.168.0.0/16
range will be subject to actions of the “then” statement, except for
those packets destined for 192.168.100.0/24. The 192.168.100.0/24
exception allows the packets to bypass the current term and be pro-
cessed later in the firewall filter.

Bit-field Matching

Outside of the source and destination address fields in a packet are
other optional bit fields that can be useful for packet filtering. These
bit-fields contain information about the state of a TCP packet or IP
options. All bit-field options must be enclosed in quotations, such as:

tcp-flags “rst”;

IPv4 Protocol Matching

Table 4.2 lists common protocol match conditions in the IPv4 protocol
for numeric matches, prefix, and bit-fields.

	 Chapter		4:		Firewall	Filter	Configuration	 71

Table 4.2	Common	Protocol	Match	Conditions

Numeric Match Conditions Numeric Match Description

destination-port number

Matches a TCP or User Datagram Protocol (UDP) destination port field.
You cannot specify both the port and destination-port match conditions
in the same term. Normally, you specify this match in conjunction with
the protocol TCP or protocol UDP match statement to determine which
protocol is being used on the port.

In place of the numeric value, you can specify a text synonym. For
example, you can specify telnet or 23.

esp-spi spi-value
Matches an IPSec encapsulating security payload (ESP) security
parameter index (SPI) value. Match on this specific SPI value. You can
specify the ESP SPI value in hexadecimal, binary, or decimal form.

forwarding-class class
Matches a forwarding class. Specify assured-forwarding, best-effort,
expedited-forwarding, or network-control.

fragment-offset number Matches the fragment offset field.

icmp-code number

Matches the ICMP code field. Normally, you specify this match
condition in conjunction with the protocol ICMP match statement to
determine which protocol is being used on the port.

This value or keyword provides more specific information than ICMP-
type. Because the value’s meaning depends on the associated ICMP-type,
you must specify ICMP-type along with ICMP-code.

In place of the numeric value, you can specify a text synonym. For
example, you can specify ip-header-bad or 0.

icmp-type number

Matches the ICMP packet type field. Normally, you specify this match
condition in conjunction with the protocol ICMP match statement to
determine which protocol is being used on the port.

In place of the numeric value, you can specify a Matches the ICMP code
field. Normally, you specify this match condition in conjunction with the
protocol ICMP match statement to determine which protocol is being
used on the port.

In place of the numeric value, you can specify a text synonym. For
example, you can specify time-exceeded or 11.

interface-group group-number

Matches the interface group on which the packet was received. An
interface group is a set of one or more logical interfaces. For information
about configuration interface groups, see the Junos Policy Framework
Configuration Guide, at http://www.juniper.net/techpubs/.

	 72	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

packet-length bytes
Matches the length of the received packet, in bytes. The length refers only
to the IP packet, including the packet header, and does not include any
Layer 2 encapsulation overhead.

port number

Matches a TCP or UDP source or destination port field. You cannot
specify both the port match and either the destination-port or source-
port match conditions in the same term. Normally, you specify this
match condition in conjunction with the protocol TCP or protocol UDP
match statement to determine which protocol is being used on the port.

In place of the numeric value, you can specify a text synonym. For
example, you can specify BGP or 179.

precedence ip-precedence-field

Matches the IP precedence field. You can specify precedence in
hexadecimal, binary, or decimal form.

In place of the numeric value, you can specify a text synonym. For
example, you can specify immediate or 0x40.

protocol number
Matches the IP protocol field. In place of the numeric value, you can
specify a text synonym. For example, you can specify OSPF or 89.

source-port number

Matches the TCP or UDP source port field. You cannot specify the port
and source-port match conditions in the same term. Normally, you
specify this match condition in conjunction with the protocol TCP or
protocol UDP match statement to determine which protocol is being
used on the port.

In place of the numeric value, you can specify a text synonym. For
example, you can specify http or 80.

Prefix Matching Prefix Match Description

address prefix Matches the IP source or destination address field. You cannot specify
both the address and the destination-address or source-address match
conditions in the same term.

destination-address prefix Matches the IP destination address field. You cannot specify the
destination-address and address match conditions in the same term.

destination-prefix-list prefix-list Matches the IP destination prefix list field. You cannot specify the
destination-prefix-list and prefix-list match conditions in the same term.

prefix-list prefix-list Matches the IP source or destination prefix list field. You cannot specify
both the prefix-list and the destination-prefix-list or source-prefix-list
match conditions in the same term.

source-address prefix Matches the IP source address field. You cannot specify the source-
address and address match conditions in the same rule.

	 Chapter		4:		Firewall	Filter	Configuration	 73

source-prefix-list prefix-list Matches the IP source prefix list field. You cannot specify the source-
prefix-list and prefix-list match conditions in the same term.

Bit-field Match Bit-field Match Description

fragment-flags number Matches an IP fragmentation flag. In place of the numeric value, you can
specify a text synonym. For example, you can specify more-fragments or
0x2000.

ip-options number Matches an IP option. In place of the numeric value, you can specify a
text synonym. For example, you can specify record-route or 7.

tcp-flags number
Matches a TCP flag. Normally, you specify this match condition in
conjunction with the protocol TCP match statement to determine which
protocol is being used on the port. In place of the numeric value, you can
specify a text synonym. For example, you can specify syn or 0x02.

first-fragment Matches the first fragment of a fragmented packet. This condition does
not match unfragmented packets.

is-fragment Matches the trailing fragment of a fragmented packet. It does not match
the first fragment of a fragmented packet. To match both first and trailing
fragments, you can use two terms, or you can use fragment-offset 0-8191.

tcp-established
Matches a TCP packet other than the first packet of a connection. This
match condition is a synonym for “(ack | rst)”.

This condition does not implicitly check that the protocol is TCP. To do
so, specify the protocol TCP match condition.

tcp-initial
Matches the first TCP packet of a connection. This match condition is a
synonym for “(syn & !ack)”.

This condition does not implicitly check that the protocol is TCP. To do
so, specify the protocol TCP match condition.

Policers

When rate limiting is required as a part of a packet filter, then policers
are configured. Policers are the ingress gatekeepers to manage the rate
at which transit traffic is allowed to flow through a given interface.
Policers limit a given traffic flow to a specified rate with a specified
burst rate. For example, if Internet video streaming is adversely
affecting the network WAN links, you many want to create a policer
that limits that traffic to 128kbps. Policers are configured independent
of the firewall filter and may be referenced as an action in one or more
firewall filters.

	 74	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

The basic policer syntax is shown here:

[edit firewall]
policer policer-name {
 if-exceeding {
bandwidth-limit bps;
bandwidth-percent number;
burst-size-limit bytes;
 }
 then {
policer-action;
 }
}

Based on the configured if-exceeding traffic rates, then the following
actions can take place:

 � discard – drop the traffic exceeding the specified rate

 � loss-priority level – change the loss priority

 � forwarding-class class-name – change the class-of-service

More detailed explanations of policers are discussed in Chapter 5.

Actions

Just as the “from” statement in a term determines the match conditions,
the “then” statement assigns actions to the term. These actions fall into
three primary categories.

 � terminating actions

 � nonterminating actions

 � policing actions

Only a single terminating and policing action can be used for a given
term, but any number of non-terminating actions may be applied.

Terminating Actions

Terminating actions stop the processing of packets through the firewall
filter. There are six terminating actions available for firewall filters:

 � accept – accept the packet.

 � discard – silently drop the packet.

 � reject – drop the packet and send an ICMP-unreachable. You may
also specify an ICMP message type after the reject keyword.

	 Chapter		4:		Firewall	Filter	Configuration	 75

 � logical system logical-system-name – accepts and forwards
packets to a specified logical system.

 � routing-instance routing-instance-name – accepts and forwards
packets to a specified routing-instance.

 � topology topology-name – used with multitopology routing.
Accepts and forwards packets to a specific routing topology.

Nonterminating Actions

Nonterminating actions are used to modify packet header information
or perform packet accounting functions. Packet header modifications
are those actions that change layer 3 or layer 4 attributes, like changing
the class of service code point. Accounting can also be performed on
the packets, such as J-flow accounting, logging packet information to
syslog, or counting the number of matches for a given term.

Table 4.3 Nonterminating	Actions	

Nonterminating Action Description

count counter-name Count the packet in the specified counter.

dscp value

(Family inet only) Classify the packet into one of the following
forwarding classes: as, assured-forwarding, best-effort, expedited-
forwarding, or network-control.

count

counter-name

Count the packet in the specified counter.

DSCP value

(Family inet only) Set the IPv4 Differentiated Services code point
(DSCP) bit. You can specify a numerical value from 0 tºhrough 63. To
specify the value in hexadecimal form, include 0x as a prefix. To specify
the value in binary form, include b as a prefix.

NOTE: The actions DSCP 0 or DSCP be (best effort) are supported
only on TSeries and M320 routers and on the10-Gigabit Ethernet
Modular Port Concentrators (MPC), 60-Gigabit Ethernet MPC, 60-
Gigabit Ethernet Queuing MPC, and 60-Gigabit Ethernet Enhanced
Queuing MPC on MX Series routers. However, these actions are not
supported on Enhanced III Flexible PIC Concentrators (FPCs) on M320
routers.

forwarding–class class
Classify the packet into a user-defined forwarding class or one of the
following default forwarding classes: assured-forwarding, best-effort,
expedited-forwarding, or network-control.

	 76	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

log

(Family inet and inet6 only) Log the packet header information in a
buffer within the Packet Forwarding Engine. You can access this
information by issuing the show firewall log command at the
command-line interface (CLI).

loss-priority (high | medium-
high | medium-low| low)

Set the loss priority level for packets.

Supported on MX Series routers; M120 and M320 routers; and M7i
and M10i routers with the Enhanced CFEB (CFEB-E).

On M320 routers, you must enable the tricolor statement at the [edit
class-of-service] hierarchy level to commit a PLP configuration with any
of the four levels specified. If the tricolor statement is not referenced,
you can only configure the high and low levels. This applies to all
protocol families.

You cannot also configure the three-color-policer nonterminating
action for the same firewall filter term. These two nonterminating
actions are mutually exclusive.

next term Continue to the next term for evaluation.

policer policer-name Using the specified policer, rate-limit the packets.

port-mirrror
(Family bridge, ccc, inet, inet6, and vpls only) Port-mirror packets
based on the specified family. Supported on M120 routers, M320
routers configured with Enhanced III FPCs, and MX Series routers only.

sample
(Family inet, inet6, and mpls only) Sample the packets.using J-flow
accounting.

syslog Log the packet to the system log file.

three-color-policer policer-
name

Apply rate limits to the traffic using the tricolor marking policer.

You cannot also configure the loss-priority action modifier for the same
firewall filter term. These two action modifiers are mutually exclusive.

traffic-class value

(Family inet6 only) Specify the traffic-class code point. You can specify
a numerical value from 0 through 63. To specify the value in
hexadecimal form, include 0x as a prefix. To specify the value in binary
form, include b as a prefix.

The default traffic-class value is best effort, that is, be or 0.
Note: The actions traffic-class 0 or traffic class be (best effort) are
supported only on TSeries and M320 routers and on the 10-Gigabit
Ethernet Modular Port Concentrator (MPC), 60-Gigabit Ethernet
MPC, 60-Gigabit Ethernet Queuing MPC, and 60-Gigabit Ethernet
Enhanced Queuing MPC on MX Series routers. However, these actions
are not supported on Enhanced III Flexible PIC Concentrators (FPCs)
on M320 routers.

	 Chapter		4:		Firewall	Filter	Configuration	 77

Nonterminating actions carry the implicit terminating action of accept.
When applied to a firewall filter term without an explicit terminating
action, the default action of accept will be used. This could cause
unintended packet processing side effects if you are just looking to
sample or log a packet. To avoid the implicit accept action, use the next
term action to allow further processing of the packets within the
firewall filter.

NOTE The next term action is not compatible with terminating actions.
Either the next term statement is used or a terminating action is
configured, or else the implicit accept is used.

Unlike terminating actions, one or more nonterminating actions may
be combined as an action in addition to the terminating action. The
next example shows a single firewall-filter example-filter that is
sysloging and counting all packets from hosts on the 192.168.2000/24
network that are connecting to web servers:

 [edit firewall family inet]
jack@west# show
filter example-filter {
 term web-srvr {
 from {
 source-address {
 192.168.200.0/24;
 }
 destination-port http;
 }
 then {
 count websrvr-count;
 syslog;
 accept;
 }
 }
 term last {
 then accept;
 }
}

The example shows multiple non-terminating actions with the single
terminating action of accept.

BEST PRACTICE Always define a terminating action or use next term. There are too
many implicit rules, default actions, and different vendor implementa-
tions to “guess” what a policy or packet filter may do. Plus, your other
team members might not share your expert knowledge. Be safe – Be
explicit!

	 78	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Firewall Evaluation Logic

So far, this chapter has alluded to the fact that firewall filters are pro-
cessed in a top down fashion. The filter itself is a container that holds
multiple terms. The terms contain the match conditions and actions that
determine what will happen to the packet as it is evaluated.

It’s important to note that firewall filters are stateless and subsequently
only evaluate packets in a unidirectional manner. This means that
blocking the packet flow from a source to a destination does not infer
the reverse action of blocking traffic from a destination back to the
source. Generally speaking, this is effective in preventing two-way
communication between the two hosts. Don’t assume that this secures
either host, however. Many attacks use techniques to deny access to
hosts, which can be realized in a unidirectional fashion by flooding or
resource depletion.

Let’s revisit a graphic from Chapter 1.

Term A
Match:
IP Source
192.168/16
Protocol
GRE

Action:
Count
Discard

Firewall Filter

Term A

Term B

Term C

Figure 4.1	 Firewall	Filter	Packet	Processing	Flow

Figure 4.1 shows a visual representation of how a firewall filter evalu-
ates a packet. Using two different packets, let’s walk through the process
but use a best guess since only Term A is shown.

 � GRE packet sourced from 192.168.1.10

 � HTTP packet sourced from 172.16.177.10

The GRE packet is evaluated by the firewall filter and begins with the

	 Chapter		4:		Firewall	Filter	Configuration	 79

first term, Term A. Because it matches the defined source IP address
and the correct protocol, the packet is counted and discarded. The
HTTP does not match the first term, so it is processed by the subse-
quent terms B and C.

Let’s explore a more real world example:

[edit firewall family inet filter example-filter]
jack@west# show
term a {
 from {
 source-address {
 192.168.1.0/24;
 }
 destination-address {
 192.168.3.0/24;
 }
 }
 then {
 log;
 accept;
 }
}
term b {
 from {
 source-address {
 192.168.10.0/24;
 }
 destination-address {
 192.168.30.0/24;
 }
 source-port [5004 5060 10000 16348-32768];
 }
 then {
 forwarding-class expedited-forwarding;
 accept;
 }
}
term c {
 from {
 source-address {
 192.168.10.10/32;
 }
 destination-address {
 192.168.30.10/32;
 }
 }
 then {
 discard;
 }
}

	 80	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

This firewall-filter, example-filter, is applied in an inbound direction
on the interface shown in drawing Figure 4.2.

example-filter

192.168.1/24
192.168.10/24

192.168.3/24
192.168.30/24

Figure 4.2	 Example-Filter	Is	Applied	in	the	Inbound	Direction

Using the same term nomenclature – terms A, B, and C – let’s evaluate
the following prefixes:

 � Generic packets from 192.168.1.10 destined for 192.168.3.10

 � Traffic between 192.168.10.10 and 192.168.30.10

 � SIP packet sourced from 192.168.10.10 destined for any host on
192.168.30.0/24

 � HTTP packets from 192.168.10.100 destined for
192.168.30.199

The first test set, generic packets sourced by 192.168.1.10 and destined
for 192.168.3.10, is evaluated against the packet filter example-filter.
Based on the match conditions of term A, it is determined that this flow
is an exact match and the packets are logged and accepted by the
firewall filter. All further terms are not evaluated.

The next test set needs to be evaluated against the example packet
filter. Traffic between the two hosts 192.168.10.10 and 192.168.30.10
does not match the criteria in either term A or term B. Term C is a
match. Since the only qualifying match conditions are source and
destination address, this packet stream will be silently dropped.

The third test set is concerned with SIP traffic flowing between the host
192.168.10.10 and the destination subnet of 192.168.30.0/24.
Evaluating from top to bottom, term A does not match, but term B
criteria matches SIP traffic. Traffic matching term B is moved to the
forwarding-class expedited forwarding, since it is VoIP traffic, and
accepted.

The final test set is web traffic flowing from 192.168.10.100 to

	 Chapter		4:		Firewall	Filter	Configuration	 81

192.168.30.199. Evaluating this traffic flow against example-filter,
it is noticed that the traffic does not match any of the terms. So what
action will be applied to this test set?

NOTE The default action for a term is to accept packets that match the
criteria defined in the “from” statement. However, this traffic flow
does not match any of the terms so the default filter behavior is
invoked, which is an implicit deny-all.

The traffic will be silently dropped.

Firewall Filter Chains

There is an implicit firewall filter that is appended to the end of all
user configured packet filters. This implicit filter drops all packets.
Without an explicit accept in user-defined policy, every packet that
does not match a term that has a corresponding action of accept will
be discarded.

This illustrates an interesting concept of chaining firewall filters
together. If, by default, an implicit deny all filter is appended to your
user-defined policies, then it would be possible to link user defined
filters into a chain. Junos interprets firewall filter chains as a single
firewall filter. Since firewall filters are compiled into the forwarding
table, the packet filters are simply merged together and the terms are
processed sequentially in the order that they appear in overall filter
chain.

[edit]
jack@west# show interfaces fe-0/0/6
unit 0 {
 family inet {
 filter {
 input-list [example-filter example2];
 }
 address 192.168.12.2/24;
 }
}

Here you can see the original filter example, example-filter, applied
to the interface fe-0/0/6. Added to the filter list is a new firewall filter
example2:

[edit firewall family inet filter example2]
jack@west# show
term d {
 from {

	 82	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

 source-address {
 192.168.10.100/32;
 }
 destination-address {
 192.168.30.0/24;
 }
 protocol tcp;
 port [http https];
 }
 then accept;
}

The effect of this change is that HTTP traffic and HTTPS traffic are
now allowed, along with packets that match the original firewall filter.
This also satisfies the final criteria from the test set that we evaluated
against the first firewall filter. When the configuration is committed in
Junos, the merged firewall filters become a superset of both individual
filters.

Summary

How are firewall filter chains helpful in the real world? They give you
the ability to create standard packet filters that address universal
security concerns so that individual filters do not have to be created for
every individual interface in the network. Write the filter once and
apply it universally to all devices. For interfaces that require additional
and more fine grained filters, simply create the interface-specific filter
and apply both filters using the input-list or output-list syntax
under the appropriate interface.

Note that packet filters shouldn’t be applied to every single router
interface in the network. Filters should be applied where packet
filtering makes sense.

Chapter 5

Policer Configuration

Policer Types . 84

Miscellaneous Policer Information .87

Policers and Firewall Filters . 89

Per-Prefix Specific Actions . 90

Interface Policers .92

Summary . 96

What to Do Next & Where to Go … . 98

	 84	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Policers are an important mechanism to rate-limit and to generally
affect how transit traffic is handled in the network. From the straight-
forward to the hierarchical, this chapter breaks down policers into their
fundamental components. Policers are important components for use
with class of service and firewall filters. Junos supports several policing
methods.

Policer Types

Junos supports three types of policers. While the descriptions seem
daunting, you’ll realize that these policer types are the same rate-limit-
ers you have been using all along.

 � Single-rate two-color policer

 � Single-rate three-color policer

 � Two-rate three-color policer

What’s up with the colors? Think of a traffic signal: green means go,
yellow means caution, and red means stop.

When traffic is conforming to the specified policer rate, the traffic is
allowed to flow normally. Traffic that is above the configured rate and
burst, but has not exceeded the excess rate, is in the caution zone. Once
traffic exceeds the configured upper threshold of a policer, then it is in
the red zone and is discarded. The color designations are for visualiza-
tion of the policer behavior – you don’t actually configure colors.

Single-rate Two-color Policer

The single-rate two-color policer is the most common policer used in
networks today. Simply stated, traffic that is within contract, or
specified bandwidth and burst rate, is not affected by the policer. Traffic
that exceeds the configured contract rate can be marked with a higher
loss priority, placed into a different forwarding class, or discarded.

Single-rate means that there is only a single bandwidth and burst rate
referenced in the policer. The two colors associated with this policer are
green and red.

Color Implicit Action Configurable Action

Green (Conforming) Assign Low Loss Priority None

	 Chapter		5:		Policer	Configuration	 85

Red (Nonconforming) None

Assign low or high loss priority,
assign a forwarding class, or
discard.

On some platforms, you can assign
medium-low or medium-high loss
priority.

Here is a sample single-rate two color policer:

[edit firewall]
policer policer-name {
 if-exceeding {
 bandwidth-limit bps;
 bandwidth-percent number;
 burst-size-limit bytes;
 }
 then {
 policer-action;
 }
}

CAUTION You may choose either bandwidth-limit or bandwidth-percent, as
they are mutually exclusive. You cannot configure a policer to use
bandwidth percentage for aggregate, tunnel, and software interfaces.

The single-rate two-color policer is the workhorse for most network
configurations. It is used with packet filters, multifield classifiers for
class of service, and interface rate limiting. Being easy to configure and
extremely flexible makes this the “go to” policer type.

Burst	Size

Determining the burst-size for a policer is usually a point for debate.
The recommended formula for calculating burst size for bandwidth
described as bits per second is:

burst size = bandwidth x allowable time for burst traffic / 8

For policers where the interface bandwidth is unknown, use the MTU
method of calculating burst size:

Burst size = Interface MTU x 10

NOTE There is finite buffer space for an interface. A good rule of thumb
estimate of the total buffer depth for an interface is around 125ms.
When configuring burst size keep this in mind.

	 86	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Single-Rate Three-Color Policer

The single-rate three-color policer is similar to the single-rate two-
color policer with the addition of the yellow color. The single-rate
two-color policer addresses conforming and nonconforming traffic.
Single-rate three-color policers introduce the idea of a committed
information rate (CIR) as well as a committed burst rate (CBR). Traffic
rates below the CIR are conforming. Traffic below the CIR and CBR is
conforming and no action is taken. Traffic that reaches the excess burst
size (EBS) is discarded. Traffic that is above the CIR and CBR but
below the EBS is assigned a higher-loss priority, making it more
susceptible to being dropped during congestion. This concept is very
similar to the frame-relay discard-eligible bit.

Color Implicit Action (internal to router) Configurable Action

Green (Conforming) Assign Low Loss Priority None

Yellow (Exceeds CIR and
CBR)

Assign Medium-high Loss Priority None

Red (exceeds EBS) Assign High Loss Priority Discard

And here is a sample single-rate three-color policer:

[edit firewall]
three-color-policer name {
 action {
 loss-priority high then discard;
 }
 logical-interface-policer;
 single-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 excess-burst-size bytes;
 }
}

MORE? As defined by RFC 2697, A Single Rate Three Color Marker, this
policer actually adjusts the loss priority in the DSCP field of the packet.

NOTE Three-color-policers can be configured as color-aware or color-blind in
the Junos OS. If the policer is color-aware then the loss priority can

	 Chapter		5:		Policer	Configuration	 87

only be marked higher – even if the packet is conforming to the policer
as it transits the router. In color-blind mode, Junos ignores the existing
loss priority on the packet and marks the loss priority, higher or lower,
based on the policer’s implicit action.

Two-Rate Three-Color Policer

The two-rate three-color policer improves on the single-rate three-color
policer by introducing a second rate tier. Reviewing the single-rate
three-color policer, there is only an excess burst size above the commit-
ted rate and burst size. Two-rate three-color policers expand the second
tier to include both an upper bandwidth limit and associated burst size,
peak information rate (PIR), and a peak burst size (PBS).

Color Implicit Action (internal to router) Configurable Action

Green (Conforming) Assign Low Loss Priority None

Yellow (Exceeds CIR and CBR) Assign Medium-high Loss Priority None

Red (exceeds PIR and PBS) Assign High Loss Priority Discard

MORE? Two-rate three-color policers are defined by RFC 2698, A Two Rate
Three Color Marker.

Here is a sample two-rate three-color policer:

[edit firewall]
three-color-policer name {
 action {
 loss-priority high then discard;
 }
 logical-interface-policer;
 two-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 peak-information-rate bps;
 peak-burst-size bytes;
 }
}

Miscellaneous Policer Information

There are some miscellaneous options to be aware of when configuring
policers and the following sections detail these instances.

	 88	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Order of Operations: Policers and Firewall Filters

There is an inherent order to the operations of all computing devices.
Junos is no different. Figure 5.1 represents the order in which policers
and firewall filters are referenced by Junos.

Interface
policer

Firewall
filters

Routing
table Firewall

filters
Interface
policer

Input Output

Figure 5.1	 Order	of	Policers	and	Filters	by	Junos

For policers and firewall filters that are applied on ingress, the policer
takes precedence before the firewall filter is evaluated. This does not
include policers referenced within a firewall filter – only policers that
have been applied directly to the interface. Inversely, firewall filters are
processed before the interface policers when applied in the egress
direction.

Multiple policers can be applied and evaluated for a given ingress
interface. Queue level policers are evaluated before policers applied at
the logical interface level. MAC layer policers (Layer 2) are evaluated
last. For egress policing, only a single policer may be configured.

Policer Configuration Options

There are particular keywords that may be used when configuring
policers that affect the way the policer is handled by Junos:

logical-bandwidth-policer: Configuring the policer bandwidth-percent
uses the physical interface bandwidth associated with the actual media
type. If a shaper is applied to the interface, the logical-bandwidth-
policer will enable the policer to reference the shaped rate.

logical-interface-policer: Each application of a policer enables a
separate instance of the policer. The logical-interface-policer keyword
creates an aggregate instance in which all applications of the policer
are treated as an aggregate for a given logical interface.

physical-interface-policer: The physical-interface-policer aggregates
the bandwidth constraints for all logical interfaces belonging to the
same physical interface. This keyword works across multiple routing
instances.

	 Chapter		5:		Policer	Configuration	 89

filter-specific: Policers operate as independent entities when referenced
in a firewall filter term. The filter-specific keyword aggregates the
behavior of the policer at the firewall filter level.

Policers and Firewall Filters

Most policers are combined with a firewall filter to selectively rate-limit
traffic based on the match conditions specified by the firewall filter.
Policers by themselves do not have a mechanism to differentiate between
different types of traffic. This combination makes a powerful tool to
manage traffic flows.

Policers are applied as an action for a given term within a firewall filter.
The policer is applied along with the other nonterminating actions and
is subject to the terminating action. Only a single policer statement can
be applied per term.

The following example configuration shows a policer that limits best
effort traffic to 1Mbps, and the policer will discard traffic exceeding
1Mbps:

[edit]
firewall {
 policer 1m-policer {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 125k;
 }
 then discard;
 }
 family inet {
 filter police-some-traffic {
 term 1 {
 from {
 dscp be;
 }
 then {
 policer 1m-policer;
 accept;
 }
 }
 term default {
 then accept;
 }
 }
 }
}

	 90	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

Per-Prefix Specific Actions

Up until this point, you have seen policers at the network and interface
levels, but Junos also provides more control for dealing with policing
at the per-prefix level. Whether you want to apply a policer for every
/32 in a given subnet, or to create a single policer for every /24 in a /16,
per-prefix policers are the tools you use to complete the job.

There are few things to remember about per-prefix actions:

 � Per-prefix policers generate multiple policers when complied into
the forwarding plane. Remember that routers have finite resourc-
es so don’t configure every policer in your network as a per-prefix
policer.

 � Per-prefix policers are only configurable for the IPv4 protocol
family.

 � Per-prefix policers are not supported on SRX and J-series devices.

To configure per-prefix policers use the following syntax.

[edit firewall family inet]
prefix-action name {
 count;
 destination-prefix-length prefix-length;
 policer policer-name;
 source-prefix-length prefix-length;
 subnet-prefix-length prefix-length;
}

The subnet-prefix-length is what sets the top prefix-length index.
The source-prefix-length and/or destination-prefix-length set the low
side of the repeating pattern. So, for each source or destination defined
prefix for a given subnet, generate a unique policer. The number of
policers generated is determined by the following formula:

Number = 2 ̂ (source/destination-prefix-length - subnet-prefix-
length)

To set a prefix action for all /32 hosts for a given /24 see this example:

[edit]
firewall {
 policer host-policer {
 filter-specific;
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 128k;
 }
 then {
 discard;

	 Chapter		5:		Policer	Configuration	 91

 }
 }
 family inet {
 prefix-action prefix-policer-set {
 count;
 destination-prefix-length 32;
 policer host-policer;
 subnet-prefix-length 24;
 }
 }
 filter filter-hosts {
 term term1 {
 from {
 destination-address 192.168.100/24;
 }
 then {
 prefix-action prefix-policer-set;
 }
 }
 }
 }
}

Notice that the subnet-prefix-length in the prefix-action matches the
destination prefix-length in the firewall filter. This prevents the gener-
ated policers from overlapping and the Junos OS will create 256
1Mbps policers in this example.

Adding additional destination addresses to the firewall filter will cause
the reuse of some of the 256 policers.

What if you wanted to apply a 50 Mbps policer per subnet for every
/24 network in the RFC1918 address 172.16/16?

Well, review the following:

[edit]
firewall {
 policer network-policer {
 filter-specific;
 if-exceeding {
 bandwidth-limit 50m;
 burst-size-limit 256k;
 }
 then {
 discard;
 }
 }

 family inet {
 prefix-action prefix-policer-set {
 count;

	 92	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

 destination-prefix-length 24;
 policer network-policer;
 subnet-prefix-length 16;
 }
 filter limit-networks {
 term term1 {
 from {
 destination-address 172.16.0.0/16;
 }
 then {
 prefix-action prefix-policer-set;
 }
 }
 }
 }
}

The prefix action subnet prefix length matches the filter limit-net-
works destination address prefix length (both are /16). The prefix
action generates 256 unique policers based on the configuration. For
every host contained in each unique /24 network – 172.16.0.0/24,
172.16.1.0/24, 172.16.2.0/24 ... 172.16.255.0/24 – each will be
governed by a common policer.

Interface Policers

Policers are only useful when they are combined with another part of
the configuration. The initial act of policer configuration creates a
policer template. This section breaks down three common interface
policer configurations.

Policers are configured under an interface for a particular protocol
family. The sample code below shows the syntax required to apply a
policer to an interface:

[edit interfaces]
ge-0/0/0 {
 unit 0 {
 family inet {
 policer {
 input policer-name;
 output policer-name;
 }
 }
 }
 }

NOTE Policers and firewall filters can coexist on an interface. It is imperative
to remember the order of operations illustrated in Figure 5.1.

	 Chapter		5:		Policer	Configuration	 93

Physical Interface Policers

Physical interface policers are used to aggregate and limit the total
available bandwidth across multiple logical interfaces as well as
multiple protocol family instances.

To create the policer:

[edit firewall]
jack# show
policer phy-int-policer {
 physical-interface-policer;
 if-exceeding {
 bandwidth-limit 50m;
 burst-size-limit 256k;
 }
 then discard;
}

Then apply the policer to an interface:

[edit]
jack# show interfaces fe-0/0/7
unit 0 {
 family inet {
 policer {
 input phy-int-policer;
 }
 address 192.168.12.2/24;
 }
}

The policer may also be referenced and applied with a firewall filter.
Here’s an alternate configuration:

[edit firewall family inet filter match-and-police]
jack@west# show
physical-interface-filter
term 1 {
 from {
 source-address {
 192.168.100.10/24;
 }
 }
 then policer phy-int-policer;
}
term last {
 then accept;
}

And the firewall filter containing the physical interface policer is then
applied to the interface:

	 94	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

[edit]
jack@west# show interfaces fe-0/0/7
unit 0 {
 family inet {
 filter {
 input match-and-police;
 }
 address 192.168.12.2/24;
 }
}

There are some caveats to remember here:

 � Both physical interface-policing methods are mutually exclusive.
You may apply the policer directly to the interface or use a firewall
filter, but not both.

 � Physical interface policers are not available on the SRX or J-series
devices.

 � You cannot create a policer that contains the physical-interface-
policer and interface-specific keywords.

 � Firewall filters must be configured under a specific protocol family.
Family any is not supported.

Aggregate Policers

If you need to rate-limit traffic across several different protocol families
from the same interface, forcing them to share to the same bandwidth
constraints, you use an aggregate policer. Imagine a customer-facing
interface is configured for both IPv4 and IPv6 and you want to police
the traffic to 50 Mbps for that interface, regardless of the protocol being
used. For this an aggregate policer is configured using the logical-in-
terface-policer keyword:

 [edit firewall]
jack# show
policer log-int-policer {
 logical-interface-policer;
 if-exceeding {
 bandwidth-limit 50m;
 burst-size-limit 256k;
 }
 then discard;
}

	 Chapter		5:		Policer	Configuration	 95

After configuring the policer, you apply the same policer to all config-
ured protocol families for a given interface:

[edit]
jack@west# show interfaces fe-0/0/7
unit 0 {
 family inet {
 policer {
 input log-int-policer;
 }
 address 192.168.12.2/24;
 }
 family inet6 {
 policer {
 input log-int-policer;
 }
 address ff80:1000::1/64;
 }
}

This ensures that all traffic, both IPv4 and IPv6, is rate-limited under a
single 50 Mbps cap.

Bandwidth Policers

An alternate configuration to limiting bandwidth by a precise rate is to
use a more ambiguous bandwidth percentage. By default, the band-
width is determined by the physical port speed. When a shaper is
applied under the class-of-service stanza, however, the bandwidth
percentage will use the shaped rate as the base interface bandwidth.
Here is an example of a shaper applied to a fast-ethernet interface:

[edit]
jack# show class-of-service
interfaces {
 fe-0/0/7 {
 unit 0 {
 shaping-rate 50m;
 }
 }
}

If a subsequent policer was added to the same interface, the bandwidth
percentage would no longer be 10% of 100Mbps, instead it would be
10% of the shaped rate of 50Mbps, as such:

	 96	 Day	One:	Configuring	Junos	Policy	and	Firewall	Filters

[edit firewall]
jack# show
policer band-percent-policer {
 logical-bandwidth-policer;
 if-exceeding {
 bandwidth-percent 10;
 burst-size-limit 128k;
 }
 then discard;
}

Summary

Policing and shaping are important tools to control traffic and keep it
in conformance. This chapter covered the various methods of policing
and their applications in the Junos configuration. Three supported
policing types are:

 � Single-rate two-color policers

 � Single-rate three-color policers

 � Two-rate three-color policers

Policers are useful for rate-limiting traffic, while shaping is useful for
normalizing traffic flows on a given interface. When used together with
CoS, these features provide a way to manage the traffic flows through
to the router to ensure delivery of critical traffic.

Applying physical and logical interfaces provides an additional level of
traffic grooming. The configurations illustrated in this chapter should
help you configure policers and shapers on your own network.

MORE? If you want to copy and paste the configurations and policies used in
this book, check out the Copy and Paste edition of this book at http://
www.juniper.net/dayone.

		 97

	 98	

What to Do Next & Where to Go …

http://www .juniper .net/dayone

The Day One book series is available for free download in PDF
format. Select titles also feature a Copy and Paste edition for direct
placement of Junos configurations. The library is available in eBook
format for iPads and iPhones from the iTunes Store>Books, or down-
load to Kindles, Androids, Blackberrys, Macs, and PCs by visiting the
Kindle Store. In addition, print copies are available for sale at Amazon
or www.vervante.com.

http://www .juniper .net/books

Juniper Networks Books works with reputable book publishers
around the world to publish networking books for use in the field or
classroom that are authored, edited, or reviewed by Juniper Networks
subject matter experts and engineers. Check out the complete Juniper
Networks Books library for new releases every calendar quarter.

http://forums .juniper .net/jnet

The Juniper-sponsored J-Net Communities forum is dedicated to
sharing information, best practices, and questions about Juniper
products, technologies, and solutions. Register to participate in this
free forum.

www .juniper .net/techpubs/

Juniper Networks technical documentation includes everything you
need to understand and configure all aspects of Junos, including
MPLS. The documentation set is both comprehensive and thoroughly
reviewed by Juniper engineering.

www .juniper .net/training/fasttrack

Take courses online, on location, or at one of the partner training
centers around the world. The Juniper Network Technical Certifica-
tion Program (JNTCP) allows you to earn certifications by demon-
strating competence in configuration and troubleshooting of Juniper
products. If you want the fast track to earning your certifications in
enterprise routing, switching, or security use the available online
courses, student guides, and lab guides.

http://www.juniper.net/dayone
http://www.juniper.net/books
http://forums.juniper.net/jnet
www.juniper.net/training/fasttrack

	Front Cover
	Back Cover
	Table of Contents
	Copyright and About the Author
	What You Need to Know Before Reading this Book
	After Reading this Book, You’ll be Able To...
	The Day One Book Series

	Chapter 1: Policy and Firewall Filters Introduction
	What is Policy?
	What are Firewall Filters?
	Quick Comparison of Policy and Firewall Filters
	Syntax and Flow of Policy
	Syntax and Flow of Firewall Filters
	Summary

	Chapter 2: Policy Configuration
	Match Conditions
	Actions
	Policy Evaluation Logic

	Chapter 3: Putting Policy to Work
	Default Routing Policy and Direction
	Applying Policy to Routing Protocols
	Summary
	Testing Policy

	Chapter 4: Firewall Filter Configuration
	Firewall Filter Syntax
	Match Criteria
	Policers
	Actions
	Firewall Evaluation Logic
	Summary

	Chapter 5: Policer Configuration
	Policer Types
	Miscellaneous Policer Information
	Policers and Firewall Filters
	Per-Prefix Specific Actions
	Interface Policers
	Summary

	What to Do Next & Where to Go

