

SUPER STORAGE SYSTEM

6047R-E1R72L 6047R-E1R72L2K

USER'S MANUAL

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.0a Release Date: August 26, 2013

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright $\mbox{@}$ 2013 by Super Micro Computer, Inc. All rights reserved.

Printed in the United States of America

Preface

About This Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the 6047R-E1R72L/6047R-E1R72L2K. Installation and maintainance should be performed by experienced technicians only.

The 6047R-E1R72L/6047R-E1R72L2K is a high-end storage system based on the SC847DE16-R1K28LPB/SC847DE16-R2K02LPB 4U rackmount chassis and the X9DRD-LN4F-JBOD dual processor serverboard.

Manual Organization

Chapter 1: Introduction

The first chapter provides a checklist of the main components included with the system and describes the main features of the X9DRD-LN4F-JBOD serverboard and the SC847DE16-R1K28LPB/SC847DE16-R2K02LPB chassis.

Chapter 2: Server Installation

This chapter describes the steps necessary to install the 6047R-E1R72L/6047R-E1R72L2K into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

Chapter 4: Standardized Warning Statements

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the 6047R-E1R72L/6047R-E1R72L2K.

Chapter 5: Advanced Serverboard Setup

Chapter 5 provides detailed information on the X9DRD-LN4F-JBOD serverboard, including the locations and functions of connections, headers and jumpers. Refer

to this chapter when adding or removing processors or main memory and when

reconfiguring the serverboard.

Chapter 6: Advanced Chassis Setup

Refer to Chapter 6 for detailed information on the SC847D chassis. You should follow the procedures given in this chapter when installing, removing or reconfigur-

ing SATA or peripheral drives and when replacing system power supply units and

cooling fans.

Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed informa-

tion on running the CMOS Setup Utility.

Appendix A: BIOS Error Beep Codes

Appendix B: System Specifications

Notes

Table of Contents

Chapter 1 Introduction 1-2 1-3 Front Control Panel 1-3 1-4 Contacting Supermicro......1-6 Chapter 2 Server Installation 2-1 2-2 Unpacking the System2-1 2-3 Preparing for Setup......2-1 Choosing a Setup Location......2-1 2-4 Warnings and Precautions2-2 Server Precautions 2-2 Rack Mounting Considerations2-3 Mechanical Loading2-3 Circuit Overloading......2-3 2-5 Rack Mounting Instructions......2-4 Identifying the Sections of the Rack Rails.....2-4 Locking Tabs2-5 Releasing the Inner Rail2-5 Installing The Inner Rails on the Chassis2-6 Installing the Outer Rails on the Rack......2-7 Standard Chassis Installation 2-8

Optional Quick Installation Method2-9

	Adapters for Round and Threaded Hole Racks	2-9			
Chap	pter 3 System Interface				
3-1	Overview	3-1			
3-2	Control Panel Buttons	3-1			
3-3	Control Panel LEDs	3-1			
3-4	Drive Carrier LEDs	3-3			
Chap	Chapter 4 Standardized Warning Statements for AC Systems				
4-1	About Standardized Warning Statements	4-1			
	Warning Definition	4-1			
	Installation Instructions	4-4			
	Circuit Breaker	4-5			
	Power Disconnection Warning	4-6			
	Equipment Installation	4-8			
	Restricted Area	4-9			
	Battery Handling	4-10			
	Redundant Power Supplies	4-12			
	Backplane Voltage	4-13			
	Comply with Local and National Electrical Codes	4-14			
	Product Disposal	4-15			
	Hot Swap Fan Warning	4-16			
	Power Cable and AC Adapter	4-18			
Chap	pter 5 Advanced Serverboard Setup				
5-1	Handling the Serverboard	5-1			
	Precautions	5-1			
	Unpacking	5-1			
5-2	Connecting Cables	5-2			
	Connecting Data Cables	5-2			
	Connecting Power Cables	5-2			
	Connecting the Control Panel	5-2			
5-3	Rear I/O Ports	5-3			
5-4	Installing the Processor and Heatsink	5-4			
	Installing an LGA 2011 Processor	5-4			
	Installing a Passive CPU Heatsink	5-7			
	Removing the Heatsink	5-7			
5-5	Installing Memory	5-8			
	Memory Support	5-8			
	DIMM Installation	5-8			
5-6	Adding PCI Add-On Cards	5-14			
5-7	Serverboard Details	5-15			

	X9DRD-LN4F-JBOD Quick Reference	16		
5-8	Connector Definitions5-	18		
5-9	Jumper Settings 5-2	25		
5-10	Onboard Indicators5-2	27		
5-11	SATA and SAS Ports5-2	28		
5-12	Installing Software5-2	29		
	SuperDoctor III5-3	30		
5-13	Onboard Battery5-3	31		
Chap	oter 6 Advanced Chassis Setup			
6-1	Static-Sensitive Devices	-1		
	Precautions6	-1		
	Unpacking6	-1		
6-2	Control Panel6	-2		
6-3	Removing the Chassis Covers6	-3		
6-4	System Fans6	-4		
	Replacing System Fans6	-4		
6-5	Drive Bay Installation/Removal6	-5		
	Hard Drive Backplane6	-7		
	Hard Drive Map6	-8		
6-6	Installing Optional Hard Drives6	-8		
	Optional Fixed Hard Drives6	-8		
	Optional 2.5" Rear Hard Drive Cage6-	10		
	Installing and Removing 2.5" Rear Hard Drives6-	10		
6-7	Power Supply6-7	12		
Chap	oter 7 BIOS			
7-1	Introduction	-1		
	Starting BIOS Setup Utility7	<u>-</u> 1		
	How To Change the Configuration Data7	-2		
	Starting the Setup Utility	-2		
7-2	Main Setup7	-2		
7-3	Advanced Setup Configurations7	-4		
7-4	Event Logs	25		
7-5	IPMI	27		
7-6	Boot	29		
7-7	Security7-3	30		
7-8	Save & Exit	31		
Appe	endix A BIOS Error Beep Codes			
Appendix B System Specifications				

Chapter 1

Introduction

1-1 Overview

The 6047R-E1R72L/6047R-E1R72L2K is a high-end storage system comprised of two main subsystems: the SC847DE16-R1K28LPB/SC847DE16-R2K02LPB 4U/rack mount chassis and the X9DRD-LN4F-JBOD dual processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the system (www.supermicro.com).

In addition to the serverboard and chassis, various hardware components have been included with the 6047R-E1R72L/6047R-E1R72L2K, as listed below:

- Two passive CPU heatsinks (SNK-P0048PS)
- Seven 9-cm system fans (FAN-0146L4)
- One air shroud (MCP-310-84703-0N)
- SATA Accessories
 One front backplane (BPN-SAS2-847DF)
 One rear backplane (BPN-SAS2-847DR)
 Thirty-six drive carriers (MCP-220-84703-0B)
- Three IT mode disk controllers (one onboard, two as add-on cards)
- One rackmount kit (MCP-290-00057-0N)

Note: For your system to work properley, please follow the links below to download all necessary drivers/utilities and the user's manual for your server.

- SMCI product manuals: http://www.supermicro.com/support/manuals/
- Product drivers and utilities: ftp://ftp.supermicro.com
- Product safety info: http://super-dev/about/policies/safety_information.cfm
- If you have any questions, please contact our support team at: support@supermicro.co

1-2 Serverboard Features

The 6047R-E1R72L/6047R-E1R72L2K is built around the X9DRD-LN4F-JBOD, a dual processor serverboard based on the Intel C602J chipset and designed to provide maximum performance. Below are the main features of the X9DRD-LN4F-JBOD. (See Figure 1-1 for a block diagram of the chipset).

Processors

The X9DRD-7LN4F supports single or dual Intel® Xeon E5-2600 Series processors in LGA 2011 sockets (Socket R). Please refer to the serverboard description pages on our web site for a complete listing of supported processors (www.supermicro.com).

Memory

The X9DRD-7LN4F has 16 DIMM slots that can support up to 512 GB of RDIMM, ECC LRDIMM or ECC/non-ECC UDIMM DDR3-1600/1333/1066/800 type memory. See Chapter 5 for details.

SAS

Three LSI 2308 SAS controllers are included with the system (one onboard two addon-cards). Each controller is connected to 24 SAS/SATA drive bays (72 bays total).

Serial ATA

A SATA controller is also integrated into the chipset to provide two SATA 3 (6/Gbps) and four SATA 2 (3 Gbps) ports, which are RAID 0, 1, 5 and 10 supported. The SATA drives are hot-swappable units. (RAID 5 supported with Windows OS only).

PCI Expansion Slots

The X9DRD-LN4F-JBOD has four PCI-E 3.0 x8 slots. TPCI slots are controlled by CPUs: both CPUs must be installed to utilize all slots. See Chapter 5 for details.

Rear I/O Ports

The color-coded I/O ports include one COM port, a VGA port, four USB 2.0 ports (additional USB headers are included on the serverboard) and four gigabit Ethernet ports. A dedicated IPMI LAN port is also included.

1-3 Server Chassis Features

The following is a general outline of the main features of the SC847DE16-R1K28LPB/SC847DE16-R2K02LPB server chassis.

System Power

The 6047R-E1R72L features a redundant (three separate power modules) 1280W high-efficiency power supply with I²C. The 6047R-E1R72L2K features a redundant (two separate power modules) 2000W high-efficiency power supply with I²C. This power redundancy provides high availability and allows you to replace a failed power supply without shutting down the system.

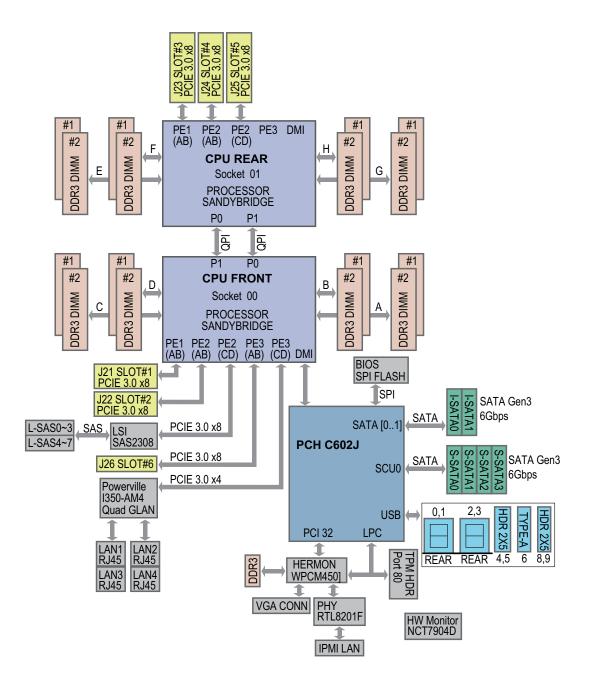
Hard Drives

The SC847DE16-R1K28LPB/SC847DE16-R2K02LPB chassis was designed to support 72 dual-channel SATA hard drives (24 on the front of the chassis and 12 located on the rear of the chassis, two drives in each drive tray). The hard drives are hot-swappable units.

See Chapter 6 for details on installing optional fixed HDDs and (for the 6047R-E1R72L2K only) optional hard drive cages in the rear of the chassis.

Note: The operating system you use must have RAID support to enable the hotswap capability of the SATA drives.

Front Control Panel


The control panel on the SuperServer 6047R-E1R72L/6047R-E1R72L2K provides you with system monitoring and control. LEDs indicate system power, HDD activity, network activity, system overheat/fan fail and power supply failure. A main power button and a system reset button are also included. In addition, two USB ports and a COM port have been incorporated into the front of the chassis for convenient access.

Cooling System

The SC847DE16-R1K28LPB/SC847DE16-R2K02LPB chassis includes seven 9-cm hot-plug system cooling fans. An air shroud channels the airflow from the system fans to efficiently cool the processors and memory. Each power supply module also includes a cooling fan.

Figure 1-1. Intel C602J Chipset: System Block Diagram

Note: This is a general block diagram. Please see Chapter 5 for details.

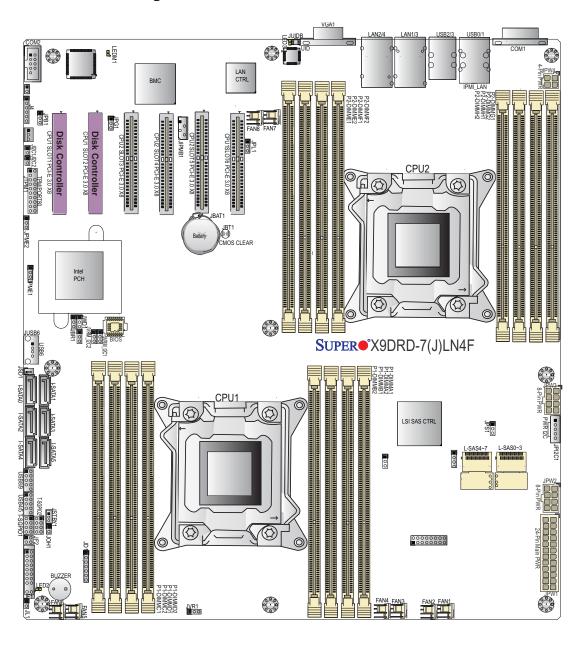


Figure 1-2. X9DRD-LN4F-JBOD Serverboard

1-4 Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.

980 Rock Ave.

San Jose, CA 95131 U.S.A.

Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008

Email: marketing@supermicro.com (General Information)

support@supermicro.com (Technical Support)

Web Site: www.supermicro.com

Europe

Address: Super Micro Computer B.V.

Het Sterrenbeeld 28, 5215 ML

's-Hertogenbosch, The Netherlands

Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525

Email: sales@supermicro.nl (General Information)

support@supermicro.nl (Technical Support)
rma@supermicro.nl (Customer Support)

Asia-Pacific

Address: Super Micro Computer, Inc.

3F, No. 150, Jian 1st Rd.

Zhonghe Dist., New Taipei City 23511

Taiwan (R.O.C)

Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3992

Web Site: www.supermicro.com.tw

Technical Support:

Email: support@supermicro.com.tw

Tel: +886-(2)-8226-3990

Chapter 2

Server Installation

2-1 Overview

This chapter provides a quick setup checklist to get your 6047R-E1R72L/6047R-E1R72L2K up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components.

2-2 Unpacking the System

You should inspect the box the system was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the system. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

2-3 Preparing for Setup

The box the system was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

Choosing a Setup Location

- Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing.
- This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like).

 This product is not suitable for use with visual display work place devices according to §2 of the the German Ordinance for Work with Visual Display Units.

2-4 Warnings and Precautions

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack before you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow any hot plug drives and power supply modules to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the room's ambient temperature. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

Reduced Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

Warning! To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

- This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
- When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
- If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack.

2-5 Rack Mounting Instructions

This section provides information on installing the chassis into a rack unit with the rails provided. There are a variety of rack units on the market, which may mean that the assembly procedure will differ slightly from the instructions provided. You should also refer to the installation instructions that came with the rack unit you are using. **NOTE:** This rail will fit a rack between 26.5" and 36.4" deep.

Identifying the Sections of the Rack Rails

The chassis package includes two rail assemblies in the rack mounting kit. Each assembly consists of three sections: An inner chassis rail which secures directly to the chassis, an outer rail that secures to the rack, and a middle rail which extends from the outer rail. These assemblies are specifically designed for the left and right side of the chassis.

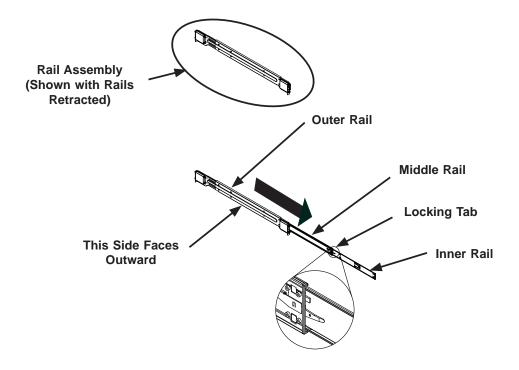


Figure 2-1. Identifying the Rack Rails (Left Rail Assembly Shown)

Locking Tabs

Each inner rail has a locking tab. This tab locks the chassis into place when installed and pushed fully into the rack. These tabs also lock the chassis in place when fully extended from the rack. This prevents the server from coming completely out of the rack when when the chassis is pulled out for servicing.

Releasing the Inner Rail

Releasing Inner Rail from the Outer Rails

- 1. Identify the left and right outer rail assemblies as described on page 2-4.
- 2. Pull the inner rail out of the outer rail until it is fully extended as illustrated below.
- 3. Press the locking tab down to release the inner rail.
- 4. Pull the inner rail all the way out.
- 5. Repeat steps 1-3 for the second outer rail.

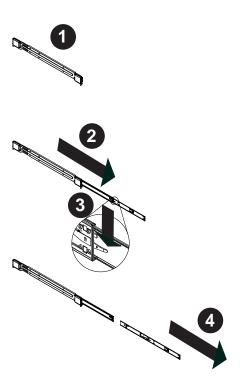


Figure 2-2. Extending and Releasing the Inner Rail

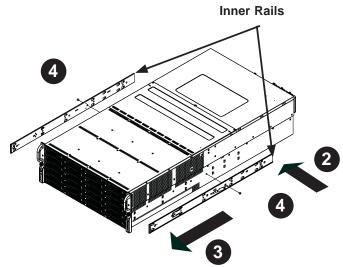


Figure 2-3. Installing the Inner Rails

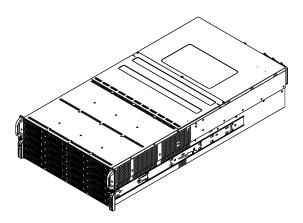


Figure 2-4. Inner Rails Installed on the Chassis

Installing The Inner Rails on the Chassis

Installing the Inner Rails

- 1. Confirm that the left and right inner rails have been correctly identified.
- 2. Place the inner rail firmly against the side of the chassis, aligning the hooks on the side of the chassis with the holes in the inner rail.
- 3. Slide the inner rail forward toward the front of the chassis until the rail clicks into the locked position, which secures the inner rail to the chassis.
- 4. Secure the inner rail to the chassis with the screws provided.
- 5. Repeat steps 1 through 4 above for the other inner rail.

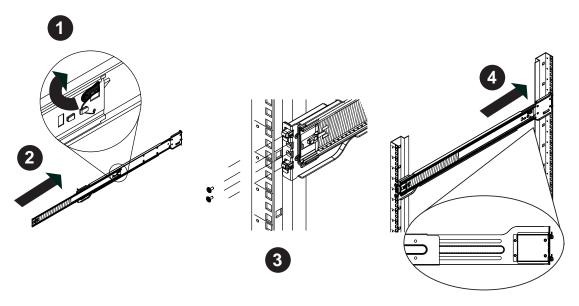


Figure 2-5. Extending and Releasing the Outer Rails

Installing the Outer Rails on the Rack

Installing the Outer Rails

- 1. Press upward on the locking tab at the rear end of the middle rail.
- 2. Push the middle rail back into the outer rail.
- 3. Hang the hooks of the front of the outer rail onto the slots on the front of the rack. If necessary, use screws to secure the outer rails to the rack, as illustrated above.
- 4. Pull out the rear of the outer rail, adjusting the length until it fits within the posts of the rack.
- 5. Hang the hooks of the rear portion of the outer rail onto the slots on the rear of the rack. If necessary, use screws to secure the rear of the outer rail to the rear of the rack.
- 6. Repeat steps 1-5 for the remaining outer rail.

Warning: do not pick up the server with the front handles. They are designed to pull the system from a rack only.

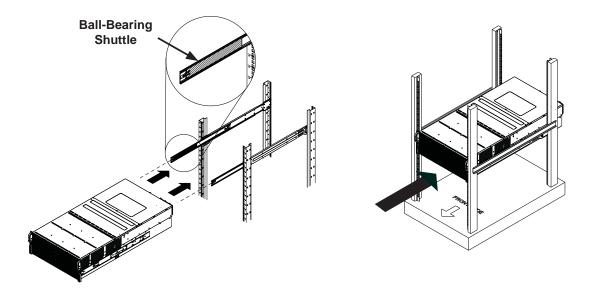


Figure 2-6. Installing into a Rack

Note: figures are for illustrative purposes only. Always install servers into racks from the bottom up.

Standard Chassis Installation

Installing the Chassis into a Rack

Warning: When initially installing the server to a rack, test that the rail locking tabs engage to prevent the server from being overextended. Have a rack lift in place as a precaution in case the test fails.

- 1. Confirm that the inner rails are properly installed on the chassis.
- 2. Confirm that the outer rails are correctly installed on the rack.
- 3. Remove all hard drives and power supplies.
- 4. Pull the middle rail out from the front of the outer rail and make sure that the ball-bearing shuttle is at the front locking position of the middle rail.
- 5. Align the chassis inner rails with the front of the middle rails.
- 6. Slide the inner rails on the chassis into the middle rails, keeping the pressure even on both sides, until the locking tab of the inner rail clicks into the front of the middle rail, locking the chassis into the fully extended position.
- 7. Depress the locking tabs of both sides at the same time and push the chassis all the way into the rear of the rack.

- 8. If needed, use screws to secure the chassis handles to the front of the rack.
- 9. Return the hard drives and power supplies to the chassis.

Warning: In any instance of pulling the system from the rack, always use a rack lift and follow all associated safety precautions.

Optional Quick Installation Method

The following quick installation method may be used to install the chassis onto a rack.

Installing the Chassis into a Rack

- 1. Install the outer rail assembly onto the rack as described on page 2-7.
- 2. Release the inner rail without retracting the middle rail.
- Install the inner rails on the chassis as previously described on page 2-6.
- 4. Install the chassis onto the middle rail as described in the previous section.

Adapters for Round and Threaded Hole Racks

The SC847D chassis includes adapter brackets for those customers using round hole racks or racks with threaded holes size M5 or larger.

Installing the Adapter Bracket

- 1. Place the hooks of the front of the outer rail into the square holes of one of the adapter brackets.
- 2. Place the hooks of the rear of the outer rail into the square holes of a second adapter bracket.
- 3. Adjust the length of the outer rail to fit within the rack uprights.
- 4. Secure the front adapter bracket to the front of the rack using the screws recommended by the rack manufacturer.
- 5. Secure the rear adapter bracket to the rear of the rack in the same manner.

Stability hazard. The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over.

Notes

Chapter 3

System Interface

3-1 Overview

There are several LEDs on the control panel as well as others on the drive carriers to keep you constantly informed of the overall status of the system as well as the activity and health of specific components. There are also two buttons on the chassis control panel.

3-2 Control Panel Buttons

The two push-buttons located on the front of the chassis are (in order from left to right) a reset button and a power on/off button.

Use the reset button to reboot the system.

Power

This is the main power button, which is used to apply or turn off the main system power. Turning off system power with this button removes the main power but keeps standby power supplied to the system. Therefore, the system power cord should be unplugged before performing service.

3-3 Control Panel LEDs

The control panel located on the front of the chassis has several LEDs. These LEDs provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take.

Power Fail

Indicates a power supply module has failed. The second power supply module will take the load and keep the system running but the failed module will need to be replaced. Refer to Chapter 6 for details on replacing the power supply. This LED should be off when the system is operating normally.

Informational LED			
Status	Description		
Continuously on and red	An overheat condition has occured. (This may be caused by cable congestion)		
Blinking red (1Hz)	Fan failure, check for an inoperative fan.		
Blinking red (0.25Hz)	Power failure, check for a non-operational power supply		
Solid blue	Local UID has been activated. Use this function to locate the server in a rack mount environment.		
Blinking blue (300 ,SEC)	Remote UID is on. Use this function to identify the server from a remote location.		

NIC1

Indicates network activity on the LAN1 port when flashing.

NIC2

Indicates network activity on the LAN2 port when flashing.

HDD

Indicates IDE channel activity. On the SuperServer 6047R-E1R72L/6047R-E1R72L2K, this LED indicates hard and/or DVD-ROM drive activity when flashing.

Power

Indicates power is being supplied to the system's power supply units. This LED should normally be illuminated when the system is operating.

3-4 Drive Carrier LEDs

Each drive carrier has four LEDs to indicate the status of the two hard drives that are installed in the carrier. The two LEDS on the left of the carrier are for the drive at the front of the tray, the two LEDs on the right of the carrier are for the rear hard drive.

• Blue:

Solid on = SAS.

Off = SATA

Blinking = Drive is actively being accessed.

When illuminated in a solid on state, this blue LED (on the front of the SAS/SATA drive carrier) indicates a SAS drive. A connection to the SAS/SATA backplane enables this LED to blink on and off when that particular drive is being accessed.

• Red:

Solid on = Drive failure

Blinking = RAID activity

When the red LED is blinking, it indicates that the system is either building, initializing or rebuilding RAID.

Notes

Chapter 4

Standardized Warning Statements for AC Systems

4-1 About Standardized Warning Statements

The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components.

Read this appendix in its entirety before installing or configuring components in the Supermicro chassis.

These warnings may also be found on our web site at http://www.supermicro.com/about/policies/safety_information.cfm.

Warning Definition

Warning!

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents.

警告の定義

この警告サインは危険を意味します。

人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、

電気回路に含まれる危険性に注意して、標準的な事故防止策に精通して下さい。

此警告符号代表危险。

您正处于可能受到严重伤害的工作环境中。在您使用设备开始工作之前,必须充分 意识到触电的危险,并熟练掌握防止事故发生的标准工作程序。请根据每项警告结 尾的声明号码找到此设备的安全性警告说明的翻译文本。

此警告符號代表危險。

您正處於可能身體可能會受損傷的工作環境中。在您使用任何設備之前,請注意觸電的危險,並且要熟悉預防事故發生的標準工作程序。請依照每一注意事項後的號 碼找到相關的翻譯說明內容。

Warnung

WICHTIGE SICHERHEITSHINWEISE

Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung vor Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden.

BEWAHREN SIE DIESE HINWEISE GUT AUF.

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo.

GUARDE ESTAS INSTRUCCIONES.

IMPORTANTES INFORMATIONS DE SÉCURITÉ

Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement.

CONSERVEZ CES INFORMATIONS.

תקנון הצהרות אזהרה

הצהרות הבאות הן אזהרות על פי תקני התעשייה, על מנת להזהיר את המשתמש מפני חבלה פיזית אפשרית. במידה ויש שאלות או היתקלות בבעיה כלשהי, יש ליצור קשר עם מחלקת תמיכה טכנית של סופרמיקרו. טכנאים מוסמכים בלבד רשאים להתקין או להגדיר את הרכיבים.

יש לקרוא את הנספח במלואו לפני התקנת או הגדרת הרכיבים במארזי סופרמיקרו.

تحذير! هذا الرمز يعني خطر انك في حالة يمكن أن تتسبب في اصابة جسدية. قبل أن تعمل على أي معدات، كن على علم بالمخاطر الناجمة عن الدوائر الكهربائية وكن على دراية بالممارسات الوقائية لمنع وقوع أي حوادث استخدم رقم البيان المنصوص في نهاية كل تحذير للعثور ترجمتها

안전을 위한 주의사항

경고!

이 경고 기호는 위험이 있음을 알려 줍니다. 작업자의 신체에 부상을 야기 할 수 있는 상태에 있게 됩니다. 모든 장비에 대한 작업을 수행하기 전에 전기회로와 관련된 위험요소들을 확인하시고 사전에 사고를 방지할 수 있도록 표준 작업절차를 준수해 주시기 바랍니다.

해당 번역문을 찾기 위해 각 경고의 마지막 부분에 제공된 경고문 번호를 참조하십시오

BELANGRIJKE VEILIGHEIDSINSTRUCTIES

Dit waarschuwings symbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij een elektrische installatie betrokken risico's en dient u op de hoogte te zijn van de standaard procedures om ongelukken te voorkomen. Gebruik de nummers aan het eind van elke waarschuwing om deze te herleiden naar de desbetreffende locatie.

BEWAAR DEZE INSTRUCTIES

Installation Instructions

Warning!

Read the installation instructions before connecting the system to the power source. 設置手順書

システムを電源に接続する前に、設置手順書をお読み下さい。

警告

将此系统连接电源前,请先阅读安装说明。

警告

將系統與電源連接前,請先閱讀安裝說明。

Warnung

Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen

¡Advertencia!

Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación.

Attention

Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation.

יש לקרוא את הוראות התקנה לפני חיבור המערכת למקור מתח.

시스템을 전원에 연결하기 전에 설치 안내를 읽어주십시오.

Waarschuwing

Raadpleeg de installatie-instructies voordat u het systeem op de voedingsbron aansluit.

Circuit Breaker

Warning!

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A. サーキット・ブレーカー

この製品は、短絡(過電流)保護装置がある建物での設置を前提としています。

保護装置の定格が250 V、20 Aを超えないことを確認下さい。

警告

此产品的短路(过载电流)保护由建筑物的供电系统提供,确保短路保护设备的额定电流不大于250V,20A。

警告

此產品的短路(過載電流)保護由建築物的供電系統提供,確保短路保護設備的額定電流不大於250V,20A。

Warnung

Dieses Produkt ist darauf angewiesen, dass im Gebäude ein Kurzschlussbzw. Überstromschutz installiert ist. Stellen Sie sicher, dass der Nennwert der Schutzvorrichtung nicht mehr als: 250 V, 20 A beträgt.

¡Advertencia!

Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V. 20 A.

Attention

Pour ce qui est de la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A.

מוצר זה מסתמך על הגנה המותקנת במבנים למניעת קצר חשמלי. יש לוודא המכשיר המגן מפני הקצר החשמלי הוא לא יותר מ-60VDC, 20A مذا المنتج وعنمد على معداث الحماوت مه الدو اعرالة صورة التي تم نتبونها ف

ناكد من أن نقى يم الجماز الوقائي ليس أكثر من: 20A, 250VDC

경고!

이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에 의존합니다. 보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지 않도록 해야 합니다.

Waarschuwing

Dit product is afhankelijk van de kortsluitbeveiliging (overspanning) van uw electrische installatie. Controleer of het beveiligde aparaat niet groter gedimensioneerd is dan 220V, 20A.

Power Disconnection Warning

Warning!

The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components.

電源切断の警告

システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセスするには、

システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り外す必要があります。

警告

在你打开机箱并安装或移除内部器件前,必须将系统完全断电,并移除电源线。

警告

在您打開機殼安裝或移除內部元件前,必須將系統完全斷電,並移除電源線。

Warnung

Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg.Versorgungsteilmodulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen.

¡Advertencia!

El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema.

Attention

Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du chassis pour installer ou enlever des composants de systéme.

אזהרה!

יש לנתק את המערכת מכל מקורות החשמל ויש להסיר את כבל החשמלי מהספק לפני גישה לחלק הפנימי של המארז לצורך התקנת או הסרת רכיבים.

경고!

시스템에 부품들을 장착하거나 제거하기 위해서는 섀시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다.

Waarschuwing

Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen

Equipment Installation

Warning!

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

機器の設置

トレーニングを受け認定された人だけがこの装置の設置、交換、またはサービスを許可されています。

警告

只有经过培训且具有资格的人员才能进行此设备的安装、更换和维修。

警告

只有經過受訓且具資格人員才可安裝、更換與維修此設備。

Warnung

Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden.

¡Advertencia!

Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo.

Attention

Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels qualifiés et expérimentés.

אזהרה!

צוות מוסמך בלבד רשאי להתקין, להחליף את הציוד או לתת שירות עבור הציוד.

يجب أن يسمح فقط للموظفين المؤهلين والمدربين لتركيب واستبدال أو خدمة هذا الجهاز

경고!

훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다.

Waarschuwing

Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel.

Restricted Area

Warning!

This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations).

アクセス制限区域

このユニットは、アクセス制限区域に設置されることを想定しています。

アクセス制限区域は、特別なツール、鍵と錠前、その他のセキュリティの手段を用いてのみ出入りが可能です。

警告

此部件应安装在限制进出的场所,限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。

警告

此裝置僅限安裝於進出管制區域,進出管制區域係指僅能以特殊工具、鎖頭及鑰匙或其他安全方式才能進入的區域。

Warnung

Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich.

¡Advertencia!

Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad.

Attention

Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité.

אזור עם גישה מוגבלת

אזהרה!

יש להתקין את היחידה באזורים שיש בהם הגבלת גישה. הגישה ניתנת בעזרת כלי אבטחה בלבד (מפתח, מנעול וכד').

경고!

이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키, 또는 기타 보안 수단을 통해서만 접근 제한 구역에 들어갈 수 있습니다.

Waarschuwing

Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen.

Battery Handling

Warning!

There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions

電池の取り扱い

電池交換が正しく行われなかった場合、破裂の危険性があります。 交換する電池はメーカーが推奨する型、または同等のものを使用下さい。 使用済電池は製造元の指示に従って処分して下さい。

警告

电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电池。请按制造商的说明处理废旧电池。

警告

電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按照製造商的說明指示處理廢棄舊電池。

Warnung

Bei Einsetzen einer falschen Batterie besteht Explosionsgefahr. Ersetzen Sie die Batterie nur durch den gleichen oder vom Hersteller empfohlenen Batterietyp. Entsorgen Sie die benutzten Batterien nach den Anweisungen des Herstellers.

Attention

Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant.

¡Advertencia!

Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante.

אזהרה!

קיימת סכנת פיצוץ של הסוללה במידה והוחלפה בדרך לא תקינה. יש להחליף את הסוללה בסוג התואם מחברת יצרן מומלצת.

סילוק הסוללות המשומשות יש לבצע לפי הוראות היצרן.

هناك خطر من انفجار في حالة استبدال البطارية بطريقة غير صحيحة فعليك استبدال البطارية فعليك البطارية فعليك فقط بنفس النوع أو ما يعادلها كما أوصت به الشركة المصنعة تخلص من البطاريات المستعملة و فقا لتعليمات الشركة الصانعة

경고!

배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오.

Waarschuwing

Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden.

Redundant Power Supplies

Warning!

This unit might have more than one power supply connection. All connections must be removed to de-energize the unit.

冗長電源装置

このユニットは複数の電源装置が接続されている場合があります。 ユニットの電源を切るためには、すべての接続を取り外さなければなりません。

警告

此部件连接的电源可能不止一个,必须将所有电源断开才能停止给该部件供电。

警告

此裝置連接的電源可能不只一個,必須切斷所有電源才能停止對該裝置的供電。

Warnung

Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein trom zugeführt wird, müssen alle Verbindungen entfernt werden.

¡Advertencia!

Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones.

Attention

Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées.

אם קיים יותר מספק אחד

אזהרה !

ליחדה יש יותר מחיבור אחד של ספק. יש להסיר את כל החיבורים על מנת לרוקן את היחידה. قد يكون لهذا الجهاز عدة اتصالات بوحدات امداد الطاقة. يجب إزالة كافة الاتصالات لعزل الوحدة عن الكهرباء

경고!

이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다.

Waarschuwing

Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken.

Backplane Voltage

Warning!

Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing.

バックプレーンの電圧

システムの稼働中は危険な電圧または電力が、バックプレーン上にかかっています。 修理する際には注意ください。

警告

当系统正在进行时,背板上有很危险的电压或能量,进行维修时务必小心。

警告

當系統正在進行時,背板上有危險的電壓或能量,進行維修時務必小心。

Warnung

Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung.

¡Advertencia!

Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise.

Attention

Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance.

מתח בפנל האחורי

אזהרה!

קיימת סכנת מתח בפנל האחורי בזמן תפעול המערכת. יש להיזהר במהלך העבודה.

경고!

시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생합니다. 서비스 작업 시 주의하십시오.

Waarschuwing

Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het systeem in gebruik is. Voorzichtigheid is geboden tijdens het onderhoud.

Comply with Local and National Electrical Codes

Warning!

Installation of the equipment must comply with local and national electrical codes.

地方および国の電気規格に準拠

機器の取り付けはその地方および国の電気規格に準拠する必要があります。

警告

设备安装必须符合本地与本国电气法规。

警告

設備安裝必須符合本地與本國電氣法規。

Warnung

Die Installation der Geräte muss den Sicherheitsstandards entsprechen.

¡Advertencia!

La instalacion del equipo debe cumplir con las normas de electricidad locales y nacionales.

Attention

L'équipement doit être installé conformément aux normes électriques nationales et locales.

תיאום חוקי החשמל הארצי

אזהרה!

התקנת הציוד חייבת להיות תואמת לחוקי החשמל המקומיים והארציים.

تركيب المعدات الكهربائية يجب أن يمتثل للقوانين المحلية والوطنية المتعلقة بالكهرباء

경고!

현 지역 및 국가의 전기 규정에 따라 장비를 설치해야 합니다.

Waarschuwing

Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften.

Product Disposal

Warning!

Ultimate disposal of this product should be handled according to all national laws and regulations.

製品の廃棄

この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。

警告

本产品的废弃处理应根据所有国家的法律和规章进行。

警告

本產品的廢棄處理應根據所有國家的法律和規章進行。

Warnung

Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen.

¡Advertencia!

Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales.

Attention

La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent.

סילוק המוצר

ווהרה!

סילוק סופי של מוצר זה חייב להיות בהתאם להנחיות וחוקי המדינה.

عند التخلص النهائي من هذا المنتج ينبغي التعامل معه وفقا لجميع القوانين واللوائح الوطنية

경고!

이 제품은 해당 국가의 관련 법규 및 규정에 따라 폐기되어야 합니다.

Waarschuwing

De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen.

Hot Swap Fan Warning

Warning!

The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing.

ファン・ホットスワップの警告

シャーシから冷却ファン装置を取り外した際、ファンがまだ回転している可能性があります。ファンの開口部に、指、ドライバー、およびその他のものを近づけないで下さい。

警告

当您从机架移除风扇装置,风扇可能仍在转动。小心不要将手指、螺丝起子和其他 物品太靠近风扇

警告

當您從機架移除風扇裝置,風扇可能仍在轉動。小心不要將手指、螺絲起子和其他物品太靠近風扇。

Warnung

Die Lüfter drehen sich u. U. noch, wenn die Lüfterbaugruppe aus dem Chassis genommen wird. Halten Sie Finger, Schraubendreher und andere Gegenstände von den Öffnungen des Lüftergehäuses entfernt.

¡Advertencia!

Los ventiladores podran dar vuelta cuando usted quite ell montaje del ventilador del chasis. Mandtenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador

Attention

Il est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur.

אזהרה!

כאשר מסירים את חלקי המאוורר מהמארז, יתכן והמאווררים עדיין עובדים. יש להרחיק למרחק בטוח את האצבעות וכלי עבודה שונים מהפתחים בתוך המאוורר

من الممكن أن المراوح لا تزال تدور عند إزالة كتلة المروحة من الهيكل يجب إبقاء الأصابع ومفكات البراغي وغير ها من الأشياء بعيدا عن الفتحات في كتلة المروحة.

경고!

새시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조림품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오.

Waarschuwing

Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing.

Power Cable and AC Adapter

Warning!

When installing the product, use the provided or designated connection cables, power cables and AC adaptors. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA -certified cables (that have UL/CSA shown on the code) for any other electrical devices than products designated by Supermicro only.

電源コードとACアダプター

製品を設置する場合、提供または指定された接続ケーブル、電源コードとACアダプターを使用下さい。他のケーブルやアダプタを使用すると故障や火災の原因になることがあります。電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSEマークがコードに表記)を Supermicroが指定する製品以外に使用することを禁止しています。

警告

安装此产品时,请使用本身提供的或指定的连接线,电源线和电源适配器.使用其它线 材或适配器可能会引起故障或火灾。除了Supermicro所指定的产品,电气用品和材 料安全法律规定禁止使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。

警告

安裝此產品時,請使用本身提供的或指定的連接線,電源線和電源適配器.使用其它線材或適配器可能會引起故障或火災。除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止使用未經UL或CSA認證的線材。(線材上會顯示UL/CSA符號)。

Warnung

Bei der Installation des Produkts, die zur Verfügung gestellten oder benannt Anschlusskabel, Stromkabel und Netzteile. Verwendung anderer Kabel und Adapter kann zu einer Fehlfunktion oder ein Brand entstehen. Elektrische Geräte und Material Safety Law verbietet die Verwendung von UL-oder CSA-zertifizierte Kabel, UL oder CSA auf der Code für alle anderen elektrischen Geräte als Produkte von Supermicro nur bezeichnet gezeigt haben.

¡Advertencia!

Al instalar el producto, utilice los cables de conexión previstos o designados, los cables y adaptadores de CA. La utilización de otros cables y adaptadores podría ocasionar un mal funcionamiento o un incendio. Aparatos Eléctricos y la Ley de Seguridad del Material prohíbe el uso de UL o CSA cables certificados que tienen UL o CSA se muestra en el código de otros dispositivos eléctricos que los productos designados por Supermicro solamente.

Attention

Lors de l'installation du produit, utilisez les bables de connection fournis ou désigné. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et de loi sur la sécurité Matériel interdit l'utilisation de UL ou CSA câbles certifiés qui ont UL ou CSA indiqué sur le code pour tous les autres appareils électriques que les produits désignés par Supermicro seulement.

חשמליים ומתאמי AC

אזהרה!

כאשר מתקינים את המוצר, יש להשתמש בכבלים, ספקים ומתאמים AC נועדו וסופקו לשם כך. שימוש בכל כבל או מתאם אחר יכול לגרום לתקלה או קצר חשמלי. על פי חוקי שימוש במכשירי חשמל וחוקי בטיחות, קיים איסור להשתמש בכבלים המוסמכים ב- UL או ב- CSA (כשאר מופיע עליהם קוד של (UL/CSA) עבור כל מוצר חשמלי אחר שלא צוין על ידי סופרקמיקרו בלבד.

عند تركيب الجهاز يجب استخدام كابلات التوصيل، والكابلات الكهربائية ومحولات التيار المتردد

التي أن استخدام أي كابلات ومحولات أخرى يتسبب في حدوث عطل أو حريق. تم توفير ها لك مع المنتج

الأجهزة الكهربائية ومواد قانون السلامة يحظر استخدام الكابلات CSA أو UL معتمدة من قبل

لأي أجهزة كهربائية أخرى غير المنتجات المعينة من قبل Supermicro (التي تحمل علامة UL/CSA)

경고!

제품을 설치할 때에는 제공되거나 지정된 연결케이블과 전원케이블, AC어댑터를 사용해야 합니다. 그 밖의 다른 케이블들이나 어댑터들은 고장 또는 화재의 원인이될 수 있습니다. 전기용품안전법 (Electrical Appliance and Material Safety Law)은 슈퍼마이크로에서 지정한 제품들 외에는 그 밖의 다른 전기 장치들을 위한 UL또는 CSA에서 인증한 케이블(전선 위에 UL/CSA가 표시)들의 사용을 금지합니다.

Waarschuwing

Bij het installeren van het product, gebruik de meegeleverde of aangewezen kabels, stroomkabels en adapters. Het gebruik van andere kabels en adapters kan leiden tot een storing of een brand. Elektrisch apparaat en veiligheidsinformatiebladen wet verbiedt het gebruik van UL of CSA gecertificeerde kabels die UL of CSA die op de code voor andere elektrische apparaten dan de producten die door Supermicro alleen.

Notes

Chapter 5

Advanced Serverboard Setup

This chapter covers the steps required to connect the data and power cables and install add-on cards. All serverboard jumpers and connections are also described. A layout and quick reference chart are included in this chapter for your reference. Remember to completely close the chassis when you have finished working with the serverboard to better cool and protect the system.

5-1 Handling the Serverboard

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully (see previous chapter). To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from electric static discharge.

Precautions

- Use a grounded wrist strap designed to prevent ESD.
- Touch a grounded metal object before removing boards from antistatic bags.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging to avoid electrical static discharge. When unpacking the board, make sure the person handling it is static protected.

5-2 Connecting Cables

Now that the serverboard is installed, the next step is to connect the cables to the board. These include the data cables for the peripherals and control panel and the power cables.

Connecting Data Cables

The cables used to transfer data from the peripheral devices have been carefully routed to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to keep them routed as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). The following data cables (with their locations noted) should be connected. (See the layout on page 5-10 for connector locations.)

- SATA and SAS drive data cables (SAS0 ~ SAS7)
- Control Panel cable (JF1)

Important! Make sure the cables do not come into contact with the fans.

Connecting Power Cables

The X9DRD-LN4F-JBOD has a 24-pin primary power supply connector (JPW1) for connection to the ATX power supply. In addition, there are two 8-pin 12V processor power connectors (JPW2 and JPW3) that must be connected to your power supply. See Section 5-9 for power connector pin definitions.

Connecting the Control Panel

JF1 contains header pins for various front control panel connectors. See Figure 5-1 for the pin locations of the various front control panel buttons and LED indicators.

All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the board. The other end connects to the Control Panel PCB board, located just behind the system status LEDs on the chassis. See Chapter 5 for details and pin descriptions.

20 19 Ground 0 0 NMI Χ Х 0 0 **FP PWRLED** 3.3 V 0 0 HDD LED ID_UID_SW/3/3V Stby 0 \circ NIC1 Link LED **NIC1** Activity LED 0 **NIC2 Activity LED** 0 0 **NIC2 Link LED** Blue+ (OH/Fan Fail/ 0 Red+ (Blue LED Cathode) PWR FaiL/UID LED) **Power Fail LED** 0 0 3.3V \circ \circ Reset > Reset Button Ground **Power Button** Ground

Figure 5-1. Control Panel Header Pins

5-3 Rear I/O Ports

The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-2 below for the colors and locations of the various I/O ports.

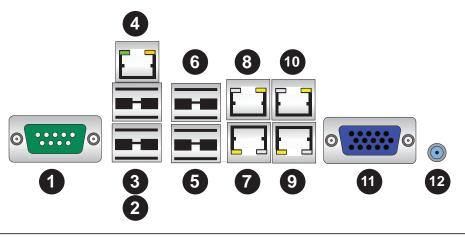
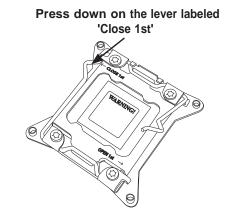
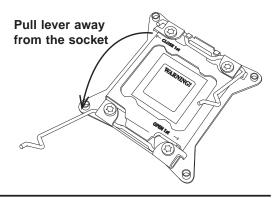


Figure 5-2. Rear I/O Ports

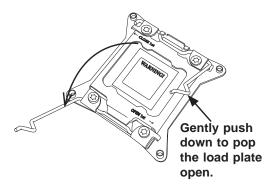
	Rear I/O Ports				
1	COM Port 1	7	Gb LAN Port 1		
2	USB Port 0	8	Gb LAN Port 3		
3	USB Port 1	9	Gb LAN Port 2		
4	Dedicated IPMI LAN	10	Gb LAN Port 4		
5	USB Port 2	11	VGA Port		
6	USB Port 3	12	UID Button		

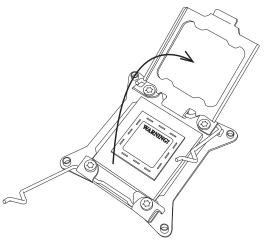
5-4 Installing the Processor and Heatsink

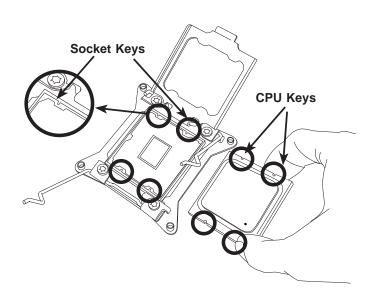

Caution: When handling the processor package, avoid placing direct pressure on the label area of the fan.


Notes:

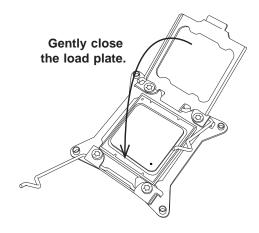
- Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.
- If you buy a CPU separately, make sure that you use an Intel-certified multidirectional heatsink only.
- Make sure to install the serverboard into the chassis before you install the CPU heatsinks.
- When receiving a serverboard without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately.
- Refer to the Supermicro web site for updates on CPU support.

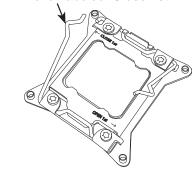

Installing an LGA 2011 Processor

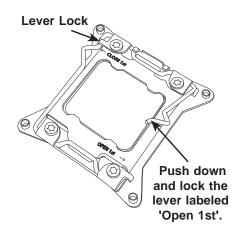

- There are two levers on the LGA2011 socket. First press and release the load lever labeled 'Open 1st'.
- Press the second load lever labeled 'Close 1st' to release the load plate from its locked position.



- With the lever labeled 'Close 1st' fully retracted, gently push down on the 'Open 1st' lever to open the load plate. Lift the load plate to open it completely.
- Using your thumb and the index finger, remove the 'WARNING' plastic cap from the socket.
- Use your thumb and index finger to hold the CPU by its edges. Align the CPU keys, which are semicircle cutouts, against the socket keys.
- 6. Once they are aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically and do not rub the CPU against any pins of the socket, which may damage the CPU or the socket.)





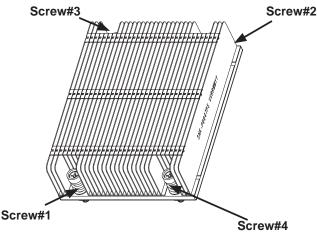

Caution: You can only install the CPU to the socket in one direction. Make sure that the CPU is properly inserted into the socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again and double-check that the CPU is aligned properly.

- With the CPU in the socket, inspect the four corners of the CPU to make sure that they are flush with the socket.
- Close the load plate. Lock the lever labeled 'Close 1st', then lock the lever labeled 'Open 1st'. Use your thumb to gently push the load levers down until the lever locks.
- 9. Repeat steps to install to the remaining CPU socket.

Push down and lock the level labeled 'Close 1st'.

Installing a Passive CPU Heatsink

- 1. Do not apply any thermal grease to the heatsink or the CPU die the required amount has already been applied.
- 2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the serverboard and the heatsink bracket underneath.
- 3. Screw in two diagonal screws (i.e. the #1 and the #2 screws) until just snug (do not over-tighten the screws to avoid possible damage to the CPU.)
- 4. Add the two remaining screws then fully tighten all four screws.


Removing the Heatsink

Caution: We do not recommend removing the CPU or the heatsink. However, if you do need to remove the heatsink, please follow the instructions below to prevent damage to the CPU or other components.

- Unscrew the heatsink screws from the serverboard in the sequence shown above.
- 2. <u>Gently</u> wriggle the heatsink to loosen it from the CPU (do not use excessive force). Once the CPU is loose, remove it from the CPU socket.
- 3. Clean the surface of the CPU and the heatsink, removing the used thermal grease. Reapply the proper amount of thermal grease on the surface before re-installing the CPU and the heatsink.

Figure 5-3. Installing the Heatsink

Loosen screws in sequence as shown.

5-5 Installing Memory

Caution! Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

Memory Support

The X9DRD-LN4F-JBOD supports up to 512 GB of ECC registered (RDIMM), ECC Load Reduced (LRDIMM) or ECC/non-ECC unbuffered (UDIMM) DDR3-1600/1333/1066/800 SDRAM in 16 DIMM sickets. All channels will run at the fastest common frequency.

DIMM Installation

Installing Memory Modules

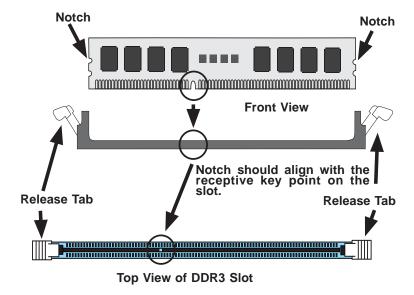
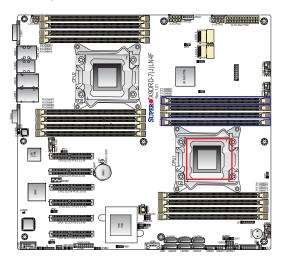
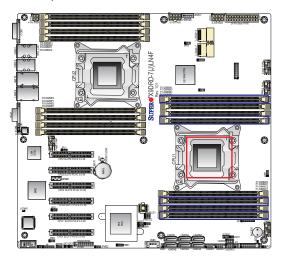
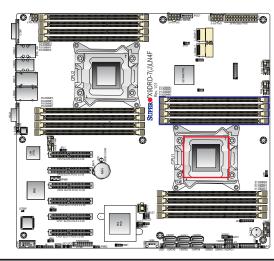

- 1. Insert the desired number of DIMMs into the memory slots starting with P1-DIMMA1. See the Memory Installation Tables below.
- 2. Insert each DIMM module vertically into its slot. Pay attention to the notch along the bottom of the module to avoid installing incorrectly (see Figure 5-3).
- 3. Use your thumbs to gently press down on both ends of the DIMM module until it snaps into place in the slot. Repeat for all modules.
- 4. Press the release tabs to the locked positions to secure the DIMM module into the slot.

Figure 5-4. DIMM Installation

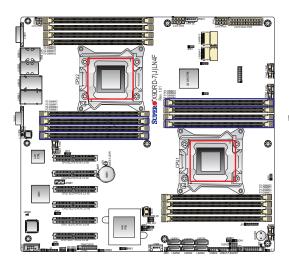

To Install: Insert module vertically and press down until it snaps into place. Pay attention to the alignment notch at the bottom.

To Remove:

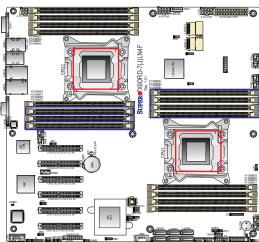

Use your thumbs to gently push the release tabs near both ends of the module. This should release it from the slot.


1 CPU, 2 DIMMs

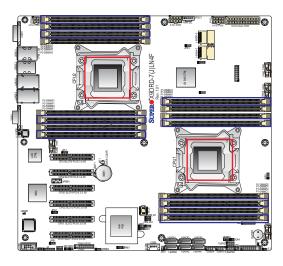
1 CPU, 4 DIMMs

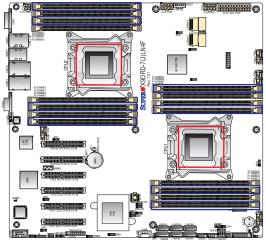


1 CPU, 5-8 DIMMs



Populate blue DIMM slots first, then the rest in any order


2 CPU, 4 DIMMs


2 CPU, 6 DIMMs

2 CPU, 8 DIMMs

2 CPU, 10-16 DIMMs

Populate blue DIMM slots first, then any memory pairs in the remaining slots.

For two CPUs and 16 DIMMs, populate all DIMM slots.

DIMM Module Population Table

Follow the tables below when installing memory.

	Processors and their Corresponding Memory Modules							
CPU#		Corresponding DIMM Modules						
CPU 1	P1-	P1-	P1-	P1-	P1-	P1-	P1-	P1-
	DIMMA1	DIMMB1	DIMMC1	DIMMD1	DIMMA2	DIMMB2	DIMMC2	DIMMD2
CPU2	P2-	P2-	P2-	P2-	P2-	P2-	P2-	P2-
	DIMME1	DIMMF1	DIMMG1	DIMMH1	DIMME2	DIMM F2	DIMMG2	DIMMH2

Processor	and Memory Module Population for Optimal Performance
Number of CPUs+DIMMs	CPU and Memory Population Configuration Table (For memory to work properly, please follow the instructions below.)
1 CPU & 2 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1
1 CPU & 4 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1
1 CPU & 5~8 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1 + Any memory pairs in P1-DIMMA2/P1-DIMMB2/P1-DIMMC2/P1-DIMMD2 slots
2 CPUs & 4 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1
2 CPUs & 6 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1
2 CPUs & 8 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2- DIMMG1/P2-DIMMH1
2 CPUs & 10~16 DIMMs	CPU1/CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIMMG1/P2-DIMMH1 + Any memory pairs in P1, P2 DIMM slots
2 CPUs & 16 DIMMs	CPU1/CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIM-MG1/P2-DIMMH1,P1-DIMMA2/P1-DIMMB2/P1-DIMMC2/P1-DIMMD2, P2-DIMME2/P2-DIMMF2/P2-DIMMG2/P2-DIMMH2

Populating UDIMM (ECC/Non-ECC) Memory Modules

	Intel E5-2600 Series Processor UDIMM Memory Support									
Ranks Per DIMM &		ory Capa Per DIMM	city	Speed (MT/s) and Voltage Validated by Slot per Channel (SPC) and DIMM Per Channel (DPC)						
Data Width	(See the Note below)			1 Slot	1 Slot Per Channel		2 Slots Per Channel			
					1DPC 1		1DPC 2I		DPC	
			1.35V	1.5V	1.35V	1.5V	1.35V	1.5V		
SRx8 Non-ECC	1GB	2GB	4GB	NA	1066, 1333, 1600	NA	1066, 1333	NA	1066, 1333	
DRx8 Non-ECC	2GB	4GB	8GB	NA	1066, 1333, 1600	NA	1066, 1333	NA	1066, 1333	
SRx16 Non-ECC	512MB	1GB	2GB	NA	1066, 1333, 1600	NA	1066, 1333	NA	1066, 1333	
SRx8 ECC	1GB	2GB	4GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333	1066	1066, 1333	
DRx8 ECC	2GB	4GB	8GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333	1066	1066, 1333	

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Populating RDIMM (ECC) Memory Modules

	Intel E5-2600 Series Processor RDIMM Memory Support								
Ranks Per	Per Per DIMM		Speed (MT/s) and Voltage Validated by Slot per Channel (SPC) and DIMM Per Channel (DPC)						
DIMM & Data	(See t	he Note I	Below)	1 Slot	Per Channel		2 Slots Pe	er Channe	I
Width					1DPC		1DPC	DPC 2DPC	
				1.35V	1.5V	1.35V	1.5V	1.35V	1.5V
SRx8	1GB	2GB	4GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600
DRx8	2GB	4GB	8GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600
SRx4	2GB	4GB	8GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600
DRx4	4GB	8GB	16GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600
QRx4	8GB	16GB	32GB	800	1066	800	1066	800	800
QRx8	4GB	8GB	16GB	800	1066	800	1066	800	800

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Populating LRDIMM (ECC) Memory Modules

Intel E5-2600 Series Processor LRDIMM Memory Support						
Ranks Per DIMM & Data Width	Memory Capacity Per DIMM		Speed (MT/s) and Voltage Valida by Slot per Channel (SPC) and DIMM Per Channel (DPC)			C) and
(See the Note Below)			1 Slot Per Channel		2 Slots Per Channel	
			1DPC		1DPC and 2DPC	
			1.35V	1.5V	1.35V	1.5V
QRx4 (DDP)	16GB	32GB	1066, 1333	1066, 1333	1066	1066, 1333
QRx8 (P)	8GB	16GB	1066, 1333	1066, 1333	1066	1066, 1333

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Other Important Notes and Restrictions

- For the memory modules to work properly, please install DIMM modules of the same type, same speed and same operating frequency. Mixing of RDIMMs, UDIMMs or LRDIMMs is not allowed. Do not install both ECC and non-ECC memory modules on the same serverboard.
- Using DDR3 DIMMs with different operating frequencies is not allowed. All channels in a system will run at the lowest common frequency.

5-6 Adding PCI Add-On Cards

The 6047R-E1R72L/6047R-E1R72L2K can accommodate four low-profile PCI-E 3.0 x8 add-on (expansion) cards.

Installing an Add-on Card

- 1. Begin by removing the shield where the card is to be installed.
- 2. Fully seat the card into the slot on the serverboard, pushing down with your thumbs evenly on both sides of the card.
- The PCI slot shields protect the serverboard and its components from EMI and aid in proper ventilation, so make sure there is always a shield covering each unused slot.

5-7 Serverboard Details

E,EDM1 LAN CTRL ■OOUPME1 SUPER®X9DRD-7(J)LN4F LSI SAS CTRL

Figure 5-5. X9DRD-LN4F-JBOD Layout

Notes

- "■" indicates the location of "Pin 1".
- Jumpers not indicated are for test purposes only.

X9DRD-LN4F-JBOD Quick Reference

Jumper	Descript	ion	Default Setting
JBT1	Clear CN	IOS	See Section 5-9
JI ² C1/JI ² C2	SMB to F	PCI-E Slots	Off (Disabled)
JPB1	BMC En	able/Disable	Pins 1-2 (Enabled)
JPG1	VGA Ena	able/Disable	Pins 1-2 (Enabled)
JPL1	GLAN1/0	GLAN2 Enable/Disable	Pins 1-2 (Enabled)
JPS1	SAS Ena	ble/Disable	Pins 1-2 (Enabled)
JVRMI ² C1/2	CPU1/2	VRM I ² C Bus	Pins 2-3 (Manufacturer's Default)
JWD1	Watch D	og Timer	Pins 1-2 (Reset)
Connector		Description	
COM1/COM2		Backplane COM Port1	/Front Accessible COM2 Header
FAN1~8		CPU/System Fan Head	ders
JD1		Speaker/Power LED In	dicator
JF1		Front Panel Control He	eader
JF2		LAN3 (NIC3)/LAN4 (N	IC4) LED Indicator Connector
JIPMB1		4-pin External BMC I ² C	C Header (for IPMI Card)
JL1		Chassis Intrusion Head	der
JOH1		Overheat LED Indicate	or Header
JPI ² C1		Power Supply SMBbus	s I ² C Header
JPW1		24-Pin ATX Main Powe	er Connector
JPW2/3		12V 8-Pin Power Conn	ectors
JPW4		12V 4-Pin Power Conn	ectors
JSD1		SATA DOM (Device on	Module) Power Connector
JSTBY1		+5V Standby Power He	eader
JTPM1		TPM (Trusted Platform	Module)/Port 80 Header
JUID		UID (Unit Identification) Switch
LAN1/3, LAN2	/4	Gigabit Ethernet Ports	1/2, 3/4
(IPMI) LAN		Dedicated IPMI LAN	
(I-)SATA0~5		SATA 3.0 (0~1) and SA	TA 2.0 (2~5) Ports (from Intel PCH)
(L)SAS0~3, 4~	7	SAS 2.0 Ports 0~3, 4~	7 (from LSI SAS 2308 Controller)

(T-)SGPIO 1/2 SATA General Purpose I/O Header (BP) USB 0/1, 2/3 Back Panel USB 0/1, 2/3 (FP) USB 4/5, USB 8/9 Front Panel Accessible USB Connections (4/5, 8/9) (FP) USB 6 Type A USB Embedded Drive Connector VGA Backpanel VGA Port	Slots 1/2/6 (CPU1), Slots 3/4/5 (CPU2)	PCI-Express 3.0 x8 Slots
(FP) USB 4/5, USB 8/9 Front Panel Accessible USB Connections (4/5, 8/9) (FP) USB 6 Type A USB Embedded Drive Connector	(T-)SGPIO 1/2	SATA General Purpose I/O Header
(FP) USB 6 Type A USB Embedded Drive Connector	(BP) USB 0/1, 2/3	Back Panel USB 0/1, 2/3
	(FP) USB 4/5, USB 8/9	Front Panel Accessible USB Connections (4/5, 8/9)
VGA Backpanel VGA Port	(FP) USB 6	Type A USB Embedded Drive Connector
	VGA	Backpanel VGA Port

LED	Description	State	Status
LED2	Standby PWR LED	Green: On	Standby PWR On
LED3	Rear UID LED	Blue: On	Unit Identified
LEDM1	BMC Heartbeat LED	Green: Blinking	BMC Normal

5-8 Connector Definitions

Power Connectors

A 24-pin main power supply connector (JPW1), two 8-pin CPU power connectors (JPW2/3) must be connected to the power supply. These power connectors meet the SSI EPS 12V specification. See the table on the right for pin definitions.

Warning: To provide adequate power supply to the serverboard, be sure to connect all four power connectors to the power supply. Failure to do so will void the manufacturer warranty on your power supply and serverboard.

Secondary Power Connector

JPW2 and JPW3 must also be connected to the power supply. See the tables on the right for pin definitions.

Power Button

The Power On connection is on pins 1 and 2 of JF1. These should be connected to the chassis power button. See p. 5-4 and the table on the right for pin definitions.

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1 and attaches to the reset switch on the computer chassis. See p. 5-4 and the table on the right for pin definitions.

ATX Power 24-pin Connector Pin Definitions				
Pin#	Definition	Pin#	Definition	
13	+3.3V	1	+3.3V	
14	-12V	2	+3.3V	
15	COM	3	COM	
16	PS_ON	4	+5V	
17	COM	5	COM	
18	COM	6	+5V	
19	COM	7	COM	
20	Res (NC)	8	PWR_OK	
21	+5V	9	5VSB	
22	+5V	10	+12V	
23	+5V	11	+12V	
24	СОМ	12	+3.3V	

NC = No Connection

+12V 4-pin Power Connector Pin Definitions				
Pins	Definition			
1~2	Ground			
3~4	+12V			

+12V 8-pin Power Connector Pin Definitions					
Pins	Definition				
1 - 4	Ground				
5 - 8	+12V				

Power Button Pin Definitions (JF1)	
Pin#	Definition
1	Power Signal
2	Ground

Reset Button Pin Definitions (JF1)	
Pin#	Definition
3	Reset
4	Ground

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. See p. 5-4 and the table on the right for pin definitions.

Overheat (OH)/Fan Fail/PWR Fail/UID LED

Connect an LED cable to pins 7 and 8 of Front Control Panel to use the Overheat/Fan Fail/Power Fail and UID LED connections. The Red LED on pin 7 provides warnings of overheat, fan failure or power failure. The Blue LED on pin 8 works as the front panel UID LED indicator. The Red LED takes precedence over the Blue LED by default. Refer to the table on the right for pin definitions.

NIC2 LED

The LED connections for LAN2 are on pins 9 and 10 of JF1. Attach an LED cable to display network activity. See p. 5-4 and the table on the right for pin definitions.

NIC1 LED

The LED connections for LAN1 are on pins 11 and 12 of JF1. Attach an LED cable to display network activity. See p. 5-4 and the table on the right for pin definitions.

HDD LED

The HDD LED connection is located on pins 13 and 14 of JF1. This LED is used to display <u>all</u> IDE/SAS/SATA activity. See p. 5-4 and the table on the right for pin definitions.

PWR Fail LED Pin Definitions (JF1)	
Pin#	Definition
5	Vcc
6	Ground

OH/Fan Fail/ PWR Fail/Blue_UID LED Pin Definitions (JF1)	
Pin# Definition	
7	Red_LED-Cathode/OH/Fan Fail/ Power Fail5.5V.SB
8	Blue_UID LED

OH/Fan Fail Indicator Status	
State	Definition
Off	Normal
On	Overheat
Flash- ing	Fan Fail

NIC2 LED Pin Definitions (JF1)	
Pin#	Definition
9	Vcc
10	Ground

NIC1 LED Pin Definitions (JF1)	
Pin#	Definition
11	Vcc
12	Ground

HDD LED Pin Definitions (JF1)	
Pin#	Definition
13	Vcc
14	HD Active

Power On LED

The Power On LED connector is located on pins 15 and 16 of JF1 (use JLED for a 3-pin connector). This connection is used to provide LED indication of power being supplied to the system. See p. 5-4 and the table on the right for pin definitions.

Power LED Pin Definitions (JF1)	
Pin#	Definition
15	5V Stby
16	Control

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. See p. 5-4 and the table on the right for pin definitions.

NMI Button Pin Definitions (JF1)	
Pin#	Definition
19	Control
20	Ground

Fan Headers

There are eight fan headers on the serverboard, all of which are 4-pin fans (Fan 1-Fan 8). Pins 1-3 of the fan headers are backward compatible with the traditional 3-pin fans. (Fan speed control is supported with 4-pin fans only.) See the table on the right for pin definitions. The onboard fan speeds are controlled by IPMI.

Fan Header Pin Definitions	
Pin#	Definition
1	Ground (Black)
2	+12V (Red)
3	Tachometer
4	PWR Modulation

Chassis Intrusion

The Chassis Intrusion header is designated JL1. Attach a chassis intrusion cable from the chassis to inform you of a chassis intrusion when the chassis is opened

Chassis Intrusion Pin Definitions	
Pin#	Definition
1	Intrusion Input
2	Ground

Serial Ports

Two serial ports are included on the serverboard. COM1 is a backpanel port and COM2 is a header located near PCI-E slot1 to provides front access support. See the table on the right for pin definitions.

	Serial Port Pin Definitions (COM1/COM2)		
Pin #	Definition	Pin #	Definition
1	DCD	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	Ground	10	NC

Ethernet Ports

Four Ethernet ports are located on the I/O backplane. A dedicated IPMI LAN port is also included to provide KVM support for IPMI 2.0. These ports accept RJ45 type cables.

	LAN Ports Pin Definition				
Pin#	Definition				
1	P2V5SB	10	SGND		
2	TD0+	11	Act LED		
3	TD0-	12	P3V3SB		
4	TD1+	13	Link 100 LED (Yellow, +3V3SB)		
5	TD1-	14	Link 1000 LED (Yellow, +3V3SB)		
6	TD2+	15	Ground		
7	TD2-	16	Ground		
8	TD3+	17	Ground		
9	TD3-	18	Ground		

Universal Serial Bus (USB)

Four Universal Serial Bus ports (USB 0/1, USB 2/3) are located on the I/O panel. In addition, three USB headers, located close to the I/O Hub, provides four front-accessible USB connections (USB 4/5, USB 8/9). One Type A connector (USB6) also supports front panel USB connection (cables are not included). See the tables on the right for pin definitions.

Backplane USB (0/1, 2/3) Pin Definitions		FP USB (4/5, 8/9, USB 6) Pin Definitions			
Pin# Definition			3 4, 8, 6, # Definition		USB 5, 9 Pin # Definition
1	+5V	1	+5V	1	+5V
2	PO-	2	PO-	2	PO-
3	PO+	3	PO+	3	PO+
4	Ground	4	Ground	4	Ground
5	NA	5	NC	5	Key

Unit Identifier Switch

The UID Switch is located next to the VGA port on the backplane. The Rear UID LED (LED3) is located next to the UID switch. The control panel UID LED connection is on pins 7/8 of JF1. Connect a cable to pin 8 on JF1 for Front Panel UID LED indication. When you press the UID switch, both the rear UID LED and control panel UID LED indicators will be turned on. Press the UID switch again to turn off both LED Indicators. These indicators provide easy identification of a system unit that may be in need of service. UID can also be triggered via IPMI.

UID Switch		
Pin#	Definition	
1	Ground	
2	Ground	
3	Button In	
4	Ground	

UID LED (LED3) Status	
Color/State Status	
Blue: On Unit Identified	

Internal Speaker

The internal speaker, located at SP1, can be used to provide audible indications for various beep codes. See the table on the right for pin definitions..

Internal Buzzer (SP1) Pin Definition		
Pin#		Definitions
Pin 1	Pos. (+)	Beep In
Pin 2	Neg. (-)	Alarm Speaker

Power LED/Speaker

On the JD1 header, pins 1-3 are for a power LED and pins 4-7 are for the speaker. Close pins 4-7 with a jumper to use an external speaker. If you wish to use the onboard speaker, please close pins 6-7. See the table on the right for speaker pin definitions.

PWR LED Connector Pin Definitions		
Pin Setting	g Definition	
Pin 1	Anode (+)	
Pin2	Cathode (-)	
Pin3 NA		
Speaker Connector Pin Settings		
Pin Setting Definition		
Pins 4-7 External Speaker		

Internal Speaker

Pins 6-7

T-SGPIO Headers

The SGPIO (Serial General Purpose Input/Output) headers are used to communicate with the enclosure management chip on the backplane. See the table on the right for pin definitions.

T-SGPIO Header Pin Definitions			
Pin#	Definition	Pin	Definition
1	NC	2	NC
3	Ground	4	DATA Out
5	Load	6	Ground
7	Clock	8	NC

Overheat/Fan Fail LED

The JOH1 header is used to connect an LED indicator to provide warnings of chassis overheating and fan failure. This LED will blink when a fan failure occurs. Refer to the table on the right for pin definitions.

Overheat LED Pin Definitions		
Pin#	Definition	
1	VDC	
2	OH Active	

OH/Fan Fail LED Status	
State	Message
Solid	Overheat
Blinking Fan Fail	

TPM Header/Port 80

A Trusted Platform Module/Port 80 header is located at JTPM1 to provide TPM support and a Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions.

	TPM/Port 80 Header Pin Definitions			
Pin #	Definition	Pin #	Definition	
1	LCLK	2	GND	
3	LFRAME#	4	<(KEY)>	
5	LRESET#	6	+5V (X)	
7	LAD 3	8	LAD 2	
9	+3.3V	10	LAD1	
11	LAD0	12	GND	
13	SMB_CLK4	14	SMB_DAT4	
15	+3V_DUAL	16	SERIRQ	
17	GND	18	CLKRUN# (X)	
19	LPCPD#	20	LDRQ# (X)	

Power Supply SMBus I²C Header

The power System Management Bus header at JPI²C1 is used to monitor the status of the power supply, fan and system temperature. See the table on the right for pin definitions.

PWR SMB Pin Definitions		
Pin#	Definition	
1	Clock	
2	Data	
3	PWR Fail	
4	Ground	
5	+3.3V	

DOM Power Connector

A power connector for SATA DOM (Disk On Module) devices is located at JSD1. Connect an appropriate cable here to provide power support for your DOM devices.

DOM PWR Pin Definitions		
Pin#	Definition	
1	+5V	
2	Ground	
3	Ground	

IPMB

A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect the appropriate cable here to use the IPMB I²C connection on your system.

IPMB Header Pin Definitions			
Pin#	Definition		
1	Data		
2	Ground		
3	Clock		
4	No Connection		

Standby Power Header

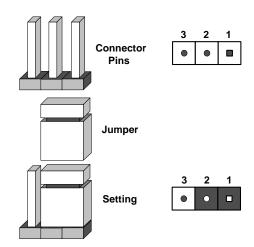
The +5V Standby Power header is located at JSTBY1. See the table on the right for pin definitions. (You must also have a card with a Standby Power connector and a cable to use this feature.)

Standby PWR Pin Definitions		
Pin#	Definition	
1	+5V Standby	
2	Ground	
3	Wake-up	

LAN3/LAN4 LED Indicators

The NIC (Network Interface Controller) LED connections for LAN Ports 3 and 4 are located on pins 3/4 and 1/2 of JF2, respectively. Attach NIC LED cables here to display network activities. Refer to the table on the right for pin definitions.

Note: The NIC LED connections for LAN Ports 1/2 are located on JF1.


LAN Ports 3/4 LED Indicators (JF2) Pin Definitions				
Pin#	Definition	Pin	Definition	
1	LAN4 Activity	2	LAN4 Link	
3	LAN3 Activity	4	LAN3 Link	

5-9 Jumper Settings

Explanation of Jumpers

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the serverboard layout pages for jumper locations.

Note: On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" means the jumper is either on only one pin or completely removed.

CMOS Clear

JBT1 is used to clear CMOS (which will also clear any passwords). Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To clear CMOS,

- 1. First power down the system and unplug the power cord(s).
- 2. With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver.
- 3. Remove the screwdriver (or shorting device).
- 4. Reconnect the power cord(s) and power on the system.

Note: <u>Do not use the PW ON connector to clear CMOS</u>.

SAS Enable

Jumper JPS1 allows the user to enable onboard LSI SAS support. The default setting is on 1-2 to enable all SAS ports. See the table on the right for jumper settings.

SAS Enable/Disable Jumper Settings			
Jumper Setting Definition			
1-2	Enabled (Default)		
2-3 Disabled			

LAN Enable/Disable

JPL1 enables or disables the LAN ports 1/2 and 3/4. See the table on the right for jumper settings. The default setting is Enabled.

LAN Enable/Disable Jumper Settings		
Jumper Setting Definition		
1-2 Enabled		
2-3 Disabled		

Watch Dog Enable/Disable

Jumper JWD controls the Watch Dog function. Watch Dog is a system monitor that can reboot the system when a software application hangs. Jumping pins 1-2 will cause WD to reset the system if an application hangs. Jumping pins 2-3 will generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in BIOS.

Watch Dog Jumper Settings			
Jumper Setting Definition			
Pins 1-2 Reset			
Pins 2-3 NMI			
Open Disabled			

BMC Enable

Jumper JPB1 allows you to enable the embedded the Winbond WPCM 450 BMC (Baseboard Management Controller) to provide IPMI 2.0/KVM support. See the table on the right for jumper settings.

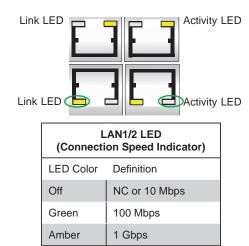
BMC Enable Jumper Settings		
Jumper Setting Definition		
Pins 1-2	BMC Enable	
Pins 2-3	Disable	

SMB Bus to PCI-Exp. Slots

Use Jumpers JI²C1 and JI²C2 to connect the System Management Bus (I²C) to PCI-Express slots in order to improve PCI slot performance. These two jumpers are to be set at the same time. The default setting is Closed to enable the connections. See the table on the right for jumper settings.

I ² C to PCI-E slots Jumper Settings		
Jumper Setting Definition		
Closed Enabled (Default)		
Open Disabled		

VGA Enable/Disable


JPG1 allows you to enable or disable the VGA port. The default position is on pins 1 and 2 to enable VGA. See the table on the right for jumper settings.

VGA Enable/Disable Jumper Settings				
Jumper Setting Definition				
Pins 1-2	Enabled			
Pins 2-3 Disabled				

5-10 Onboard Indicators

LAN LEDs

The Ethernet ports (located beside the VGA port) have two LEDs. On each port, the yellow LED flashes to indicate activity while the other LED may be green, amber or off to indicate the speed of the connection. See the table on the right for the functions associated with the connection speed LED.

IPMI Dedicated LAN LEDs

An additional Dedicated IPMI LAN port is also located on the I/O backplane. The amber LED on the right indicates activity, while the green LED on the left indicates the speed of the connection. See the table at right for more information.

IPMI LAN Link LED (Left) & Activity LED (Right)			
LED Status Definition			
Link	Green: Solid	100 Mbps	
Activity Amber: Blinking Active			

Onboard Power LED

An Onboard Power LED is located at LED2. This LED Indicator is lit when the system is on. Be sure to unplug the power cord before removing or adding any components. See the table on the right for more details.

Onboard PWR LED Indicator			
LED Color Definition			
Off	System Off (PWR cable not connected)		
Green	System On		
Green: Flashing Quickly	ACPI S1 State		

BMC Heartbeat LED

A BMC Heartbeat LED is located at LEMD1. When blinking, the BMC is functioning normally.

	BMC Heartbeat LED			
LED	LED Definition			
D1	Blinking: BMC: Normal			

Unit Identification Switch/LED

A Unit Identifier switch (UID) and a rear UID LED indicator (LED3) are located next to LAN ports on the back of the chassis. When the user pushes the rear UID switch, the rear UID LED (LED3) will be turned on. Push the UID switch again to turn off the LED indicator. The UID switch provides easy identification of a system unit that may be in need of service. See the tables on the right for more information.

UID LED Status		
Color/State OS Status		
Blue: On	Windows OS	Unit Identified
Blue: Blinking	Linux OS	Unit Identified

5-11 SATA and SAS Ports

Serial ATA Ports

There are six Serial ATA Ports (I-SATA0~I-SATA 5) located on the serverboard, including four SATA2 ports and two SATA3 ports. These ports provide serial-link signal connections, which are faster than Parallel ATA. See the table on the right for pin definitions.

SATA Port Pin Definitions				
Pin# Definition Pin Definition				
1	Ground	2	TXP	
3	TXN	4	Ground	
5	RXN	6	RXP	
7	Ground			

SAS Ports

Eight Serial Attached SCSI ports (SAS 0~3, 4~7) provide serial link connections. These ports are supported by an LSI 2208 ccontroller. See the table on the right for pin definitions.

SAS Port Pin Definitions			
Pin# Definition Pin Definition			
1	Ground	2	TXP
3	TXN	4	Ground
5	RXN	6	RXP
7	Ground		

5-12 Installing Software

The Supermicro ftp site contains drivers and utilities for your system at ftp://ftp. supermicro.com. Some of these must be installed, such as the chipset driver.

After accessing the ftp site, go into the CDR_Images directory and locate the ISO file for your serverboard. Download this file to create a CD/DVD of the drivers and utilities it contains. (You may also use a utility to extract the ISO file if preferred.)

Another option is to go to the Supermicro Website at http://www.supermicro.com/products/. Find the product page for your serverboard here, where you may download individual drivers and utilities.

After creating a CD/DVD with the ISO files, insert the disk into the CD/DVD drive on your system and the display shown in Figure 5-6 should appear.

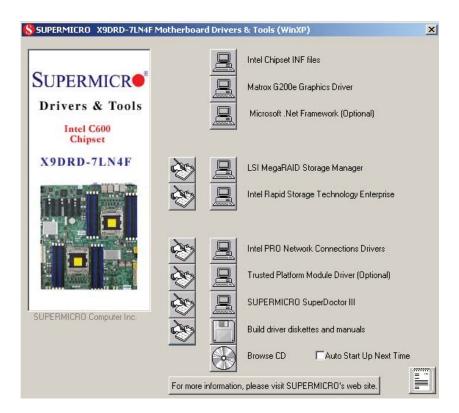


Figure 5-6. Driver/Tool Installation Display Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents.

SuperDoctor III

The SuperDoctor® III program is a web-based management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The SuperDoctor III program allows you to monitor the environment and operations of your system. SuperDoctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the figures below for examples of the SuperDoctor III interface.

Note: The default User Name and Password for SuperDoctor III is ADMIN / ADMIN.

Note: When SuperDoctor III is first installed, it adopts the temperature threshold settings that have been set in BIOS. Any subsequent changes to these thresholds must be made within SuperDoctor III, as the SuperDoctor III settings override the BIOS settings. To set the BIOS temperature threshold settings again, you would first need to uninstall SuperDoctor III.

SuperDoctor

Remote Management

System Info. Health Info Performance Remote Control Configuration Administration Systems Management Report Help

Health Information

Fan

Voltage

Voltage

Voltage

Voltage

Voltage

10.75V 13.31V 2.96V 3.32V 11.9V 11.9V 43.5V

Figure 5-7. SuperDoctor III Interface Display Screen (Health Information)

SuperDoctor

Remote Management

System Info. | Health Info. | Performance | Remote Control | Configuration | Administration | Systems Management | Report | Help |

Remote Control

Graceful power control (cancelable)

Supero Doctor III allows a user to inform the OS to reboot or shut down the system within 30 seconds. On the system console, a pop-up window will appear with a message telling the local user to save his working files. Before the system reboots or shuts down, it's allowed to cancel the action either locally or remotely.

Power control (noncancelable)

Supero Doctor III allows a user to inform the OS to reboot or shut down the system right away. The system will reboot or shut down without any warning messages. It's not allowed to cancel the action.

Figure 5-8. SuperDoctor III Interface Display Screen (Remote Control)

Note: The SuperDoctor III program and User's Manual can be downloaded from the Supermicro web site at http://www.supermicro.com/products/accessories/software/SuperDoctorIII.cfm. For Linux, we recommend that you use the SuperDoctor II application instead.

5-13 Onboard Battery

Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

LITHIUM BATTERY

BATTERY HOLDER

Figure 5-9. Installing the Onboard Battery

Notes

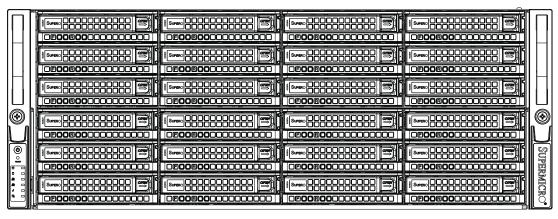
Chapter 6

Advanced Chassis Setup

This chapter covers the steps required to install components and perform maintenance on the SC847DE16-R1K28LPB/SC847DE16-R2K02LPB chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the step that follows. The only tool you will need to install components and perform maintenance is a Philips screwdriver.

6-1 Static-Sensitive Devices

Electrostatic discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage.


Precautions

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

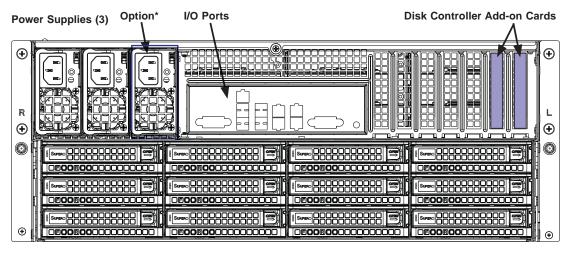

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

Figure 6-1. Front and Rear Chassis Views

Control Panel

Hard Drive Carriers (24)

Hard Drive Carriers (12)

*This bay is available for the rear hot-swap drive bay option on the 6047R-E1R72L2K. See Section 6-5.

6-2 Control Panel

The control panel (located on the front of the chassis) must be connected to the JF1 connector on the serverboard to provide you with system status indications. A ribbon cable has bundled these wires together to simplify the connection.

Connect the cable from JF1 on the serverboard to the Control Panel PCB (printed circuit board). Make sure the red wire plugs into pin 1 on both connectors. Pull all excess cabling out of the airflow path. The LEDs inform you of system status. See Chapter 3 for details on the LEDs and the control panel buttons. Details on JF1 can be found in Chapter 5.

6-3 Removing the Chassis Covers

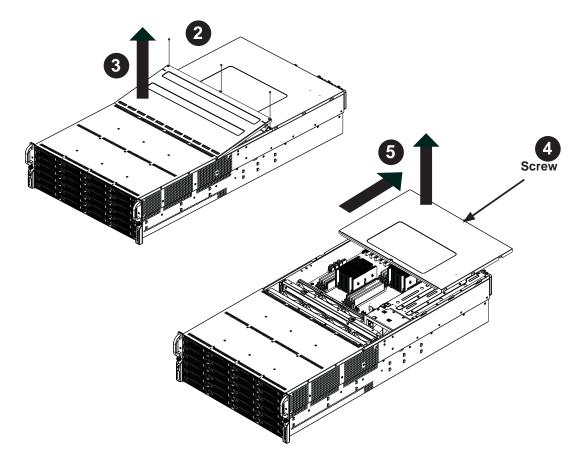


Figure 6-2. Removing the Chassis Covers

Removing the Chassis Cover

- 1. Power down the system and unplug the power cords from the rear of the power supplies.
- 2. Remove the three screws securing the front top cover.
- 3. Lift the front top cover up and off the chassis.
- 4. Remove the screw securing the rear top cover.
- 5. Slide the rear top cover back and lift it up and off the chassis.

Warning: Except for short periods of time, do NOT operate the server without the cover in place. The chassis cover must be in place to allow proper airflow and prevent overheating.

6-4 System Fans

Seven 8-cm hot-swap chassis fans provide cooling for the 6047R-E1R72L/6047R-E1R72L2K. It is very important that the chassis top cover is properly installed in order for the cooling air to circulate properly through the chassis and cool the components.

Fan speed is controlled by system temperature via IPMI. If a fan fails, the remaining fans will ramp up to full speed and the Information LED on the control panel will turn on. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan).

Replacing System Fans

Removing a Fan

- Remove the rear top cover while the power is running to determine which fan has failed. Never run the server for an extended period of time with the chassis top covers off.
- 2. Power down the system and unplug the power cords from the rear of the power supplies.
- 3. Remove the failed fan's wiring from the serverboard.
- 4. If necessary, you have the option to remove the entire fan housing at this point. To do this, remove disconnect the wiring to all four fans and remove the two side screws as illustrated below.

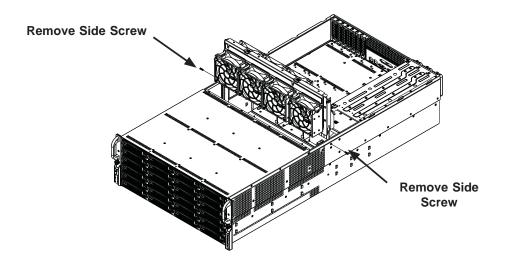


Figure 6-3. Removing the Fan Housing

- 5. Remove fans from the housing by simultaneously pressing both of the fan's release tabs.
- 6. Lift the failed fan up and out of the fan housing.
- 7. Place the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating airflow direction) point in the same direction as the arrows on the other fans.
- 8. Plug the power cords back into the power supplies and power up the system.
- 9. Check that the fan is working properly before replacing the chassis cover.

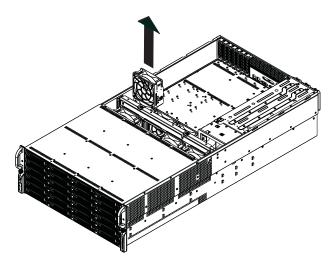


Figure 6-4. Removing an Individual Fan

6-5 Drive Bay Installation/Removal

The 6047R-E1R72L/6047R-E1R72L2K supports seventy-two hot-swappable 3.5" hard drives in double-depth hard drive carriers, with twenty-four double carriers in the front and twelve in the rear. The drives are mounted in drive carriers to simplify their installation and removal from the chassis and help to promote proper airflow for the drive bays

Removing Hard Drive Carriers from the Chassis

- 1. Press the release button on the drive carrier. This extends the drive carrier handle.
- 2. Use the handle to pull the drive carrier out of the chassis.

Warning! Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro Web site at http://www.supermicro.com/products/nfo/files/storage/SAS-1-CompList-110909. pdf

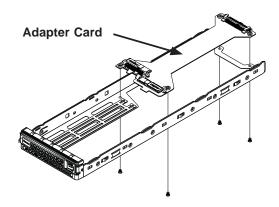


Figure 6-5. Installing an Adapter Board into a Hard Drive Carrier

Installing a Hard Drive to the Hard Drive Carrier

- 1. Place the adapter card into hard drive carrier as illustrated above.
- 2. Secure the adapter card to the hard drive carrier with four screws.

Figure 6-6. Installing 3.5" Hard Drives into the Hard Drive Carrier

- 3. Insert the first of two 3.5" hard drives into the hard drive carrier at a slight angle on the HDD connector side, with the printed circut board side facing down. Simultaneously plug the connector on the hard drive into the corresponding connector of the adapter card.
- 4. Align the mounting holes in the hard drive with those in the hard drive carrier.
- 5. Secure the hard drive to the carrier using four screws.
- 6. Repeat steps 3 through 5 for the second of the two hard drives.

<u>Important:</u> Regardless of how many hard drives are installed, all drive carriers must remain in the drive bays to maintain proper airflow.

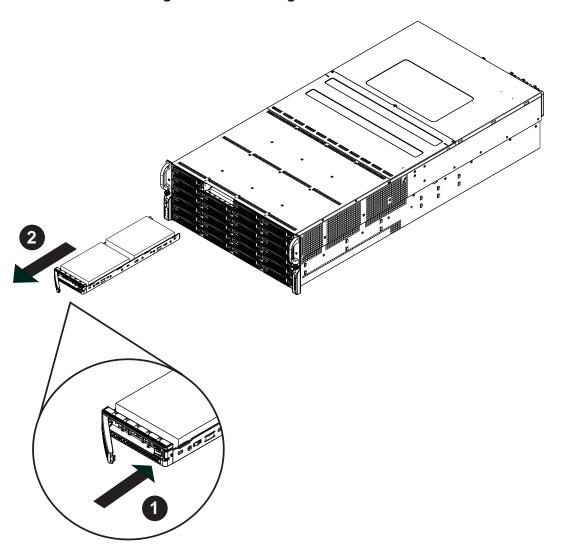
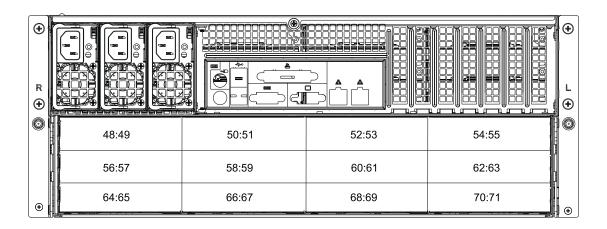


Figure 6-7. Installing a Drive Carrier

Hard Drive Backplane

The hard drives plug into a backplane that provides power, drive ID and bus termination. A RAID controller can be used with the backplane to provide data security. The operating system you use must have RAID support to enable the hot-swap capability of the SATA drives. The backplane is already preconfigured, so there are no jumpers or switches present on it.

Note: Use caution when working around the backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the holes, which aid in proper airflow.


Hard Drive Map

Refer to the figures below for the ID mapping of the hard drives in the system and the controller they are assigned to. Even numbered drives are those in the front and odd numbered drives are those in the back of the drive tray.

0:1 2:3 4:5 6:7 8:9 10:11 12:13 14:15 16:17 18:19 20:21 22:23 24:25 26:27 28:29 30:31 32:33 34:35 36:37 38:39 40:41 42:43 44:45 46:47

Figure 6-8. Drive IDs and Controllers

Drives 0 through 47 are connected to the disk controllers in PCI-E slots 1 & 2.

Drives 48 through 71 are connected to the onboard controller.

6-6 Installing Optional Hard Drives

Optional Fixed Hard Drives

The SC847D chassis includes a bracket for installing two 2.5" fixed hard drives within the chassis. Each chassis can accommodate up to two internal 2.5" hard drives

Installing Fixed HDDs into the SC847D Chassis

- 1. Power down the system, unplug the power cords from the rear of the power supplies and remove the chassis top covers as described in Section 6-3.
- 2. Secure up to two 2.5" hard drives to the tray with four special screws included in the tray's packaging.
- 3. Slide the tray onto the bracket and secure it by tightening the thumb screws as illustrated below.
- 4. Secure the bracket to the chassis by placing the mounting holes in the end of the bracket over the corresponding pins in the chassis as shown below.
- 5. Align the thumb screw at the opposite end of the bracket with the threaded hole in the chassis wall and tighten the thumb screw to secure the bracket to the wall of the chassis.

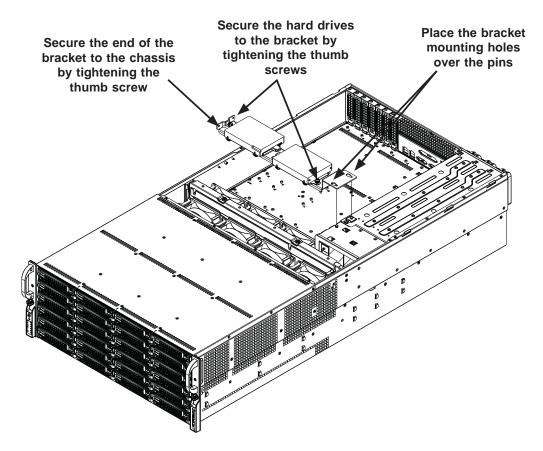


Figure 6-9. Installing 2.5" Internal Hard Drives

- 6. Connect the cabling to the hard drives through the opening in the bracket.
- 7. Replace the top covers on the chassis, plug the power cords into the rear of the power supplies and power up the system.

Optional 2.5" Rear Hard Drive Cage

The 6047R-E1R72L2K (only) may be configured with two optional rear hard drive cages that can house two 2.5" hot-swappable hard drives each.

Installing Rear HDD Cages into the SC847D Chassis

- 1. Power down the system, unplug the power cords from the rear of the power supplies and remove the chassis top covers as described in Section 6-3.
- 2. Remove the dummy covers from the rear hard drive bays.
- 3. Insert the rear 2.5" hard drive cages with the 2.5" hard drive carriers into the rearhard drive bays of the chassis.
- 4. Replace the top covers on the chassis, plug the power cords into the rear of the power supplies and power up the system.

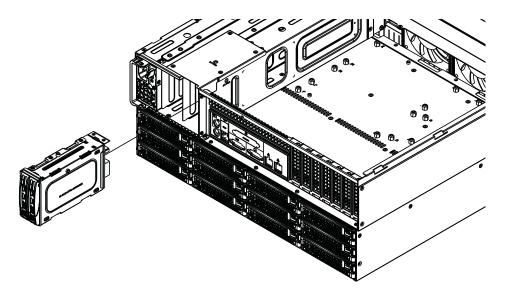


Figure 6-10. Installing the Hard Drive Cage

Installing and Removing 2.5" Rear Hard Drives

The 2.5" rear hard drives are mounted in hard drive carriers. These drives are hotswappable and may be removed without powering down the system.

Removing Hard Drive Carriers from the Chassis

- 1. Press the release button on the drive carrier. This extends the hard drive carrier handle.
- 2. Use the handle to pull the drive carrier out of the chassis.

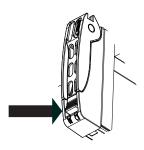


Figure 6-11. Releasing the Drive Carrier Handle

Installing 2.5" Hard Drives into Rear Hard Drive Carriers

- Remove the four screws securing the dummy drive to the hard drive carrier and set them aside for later use. Lift the dummy drive out of the hard drive carrier.
- 2. Place a 2.5" hard drive into the hard drive carrier with the printed circuit board facing downward.
- 3. Secure the hard drive to the carrier using the four screws previously set aside.

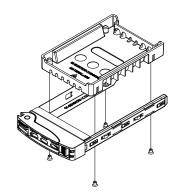


Figure 6-12. Removing the Dummy Drive

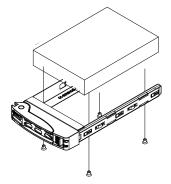
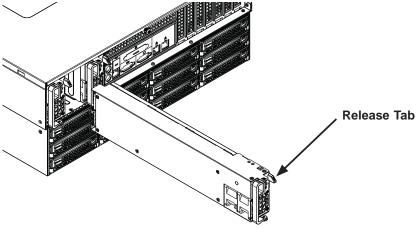


Figure 6-13. Installing a 2.5" Hard Drive

4. Use your thumb to push the hard drive carrier into the hard drive cage. Pushing in the drive carrier handle in this manner will lock the drive into the chassis.

6-7 Power Supply


The 6047R-E1R72L features a triple redundant 1280 Watt high-efficiency power supply (three modules) and the 6047R-E1R72L2K a double redundant 2000 Watt power supply (two modules). These power supplies are auto-switching capable, enabling them to automatically sense and operate at a 100v to 240v input voltage. An amber light will be illuminated on the power supply when the power is off. An illuminated green light indicates that the power supply is operating.

Redundant power supplies are hot-swappable, and can be changed without powering down the system. New units can be ordered directly from Supermicro (see contact information in the Preface).

Changing the Power Supply:

- If your chassis includes a redundant power supply (at least two power modules), you can leave the server running and remove only one power supply. If your server has only one power supply, you must power down the server and unplug the power cord.
- 2. Remove the power cord from the rear of the power supply that you wish to remove from the chassis.
- 3. Pull the power supply out of the chassis using the handle provided.
- 4. Replace the failed power module with another of the same model.
- 5. Push the new power supply module into the power bay until it clicks into the locked position.
- 6. Plug the AC power cord back into the module and power up the server.

Chapter 7

BIOS

7-1 Introduction

This chapter describes the AMI BIOS Setup utility for the X9DRD-7JLN4F/X9DRD-7LN4F It also provides the instructions on how to navigate the AMI BIOS Setup utility screens. The AMI ROM BIOS is stored in a Flash EEPROM and can be easily updated.

Starting BIOS Setup Utility

To enter the AMI BIOS Setup utility screens, press the key while the system is booting up.

Note: In most cases, the key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as <F3>, <F4>, etc.

Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for informational text. When an option is selected in the left frame, it is highlighted in white. Often informational text will accompany it.

Note: The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these informational messages.

The AMI BIOS Setup utility uses a key-based navigation system called "hot keys." Most of the AMI BIOS setup utility "hot keys" can be used at any time during setup navigation. These keys include <F3>, <F4>, <Enter>, <ESC>, arrow keys, etc.

Note 1: Options printed in **Bold** are default settings.

Note 2: <F3> is used to load optimal default settings. <F4> is used to save the settings and exit the setup utility.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing <Delete> at the appropriate time during system boot.

Note: For AMI UEFI BIOS Recovery, please refer to the UEFI BIOS Recovery User Guide posted @http://www.supermicro.com/support/manuals/.

Starting the Setup Utility

Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen below the copyright message.

Warning! Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall the manufacturer be liable for direct, indirect, special, incidental, or consequential damage arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is being updated to avoid possible boot failure.

7-2 Main Setup

When you first enter the AMI BIOS Setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS Setup screen is shown below.

The AMI BIOS Main menu displays the following information:

System Date/System Time

Use this option to change the system time and date. Highlight *System Time* or *System Date* using the arrow keys. Enter new values through the keyboard and press <Enter>. Press the <Tab> key to move between fields. The date must be entered in Day MM/DD/YY format. The time is entered in HH:MM:SS format. (**Note:** The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.).

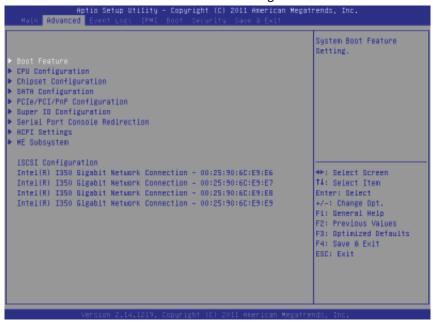
Supermicro X9DRD-7LN4F

Version

This item displays the SMC version of the BIOS ROM used in this system.

Build Date

This item displays the date that the BIOS Setup utility was built.


Memory Information

Total Memory

This displays the amount of memory that is available in the system.

7-3 Advanced Setup Configurations

Select the Advanced tab to access the following submenu items.

▶Boot Feature

Quiet Boot

This feature allows the user to select bootup screen display between POST messages and the OEM logo. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled.

AddOn ROM Display Mode

Use this item to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM Display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are Keep Current and **Force BIOS**.

Bootup Num-Lock

Use this feature to set the Power-on state for the Numlock key. The options are Off and **On**.

Wait For 'F1' If Error

Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and **Enabled**.

Interrupt 19 Capture

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Enabled, the ROM BIOS of the host adaptors will "capture" Interrupt 19

at bootup and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Disabled, the ROM BIOS of the host adaptors will not capture Interrupt 19, and the drives attached to these adaptors will not function as bootable devices. The options are **Enabled** and Disabled.

Power Configuration

Watch Dog Function

If enabled, the Watch Dog timer will allow the system to automatically reboot when a non-recoverable error occurs that lasts for more than five minutes. The options are Enabled and **Disabled.**

Power Button Function

If this feature is set to Instant Off, the system will power off immediately as soon as the user presses the power button. If this feature is set to 4 Seconds Override, the system will power off when the user presses the power button for 4 seconds or longer. The options are **Instant Off** and 4 Seconds Override.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select Stay Off for the system power to remain off after a power loss. Select Power On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last state before a power loss. The options are Stay Off, Power On, and Last State.

▶CPU Configuration

This submenu displays the information of the CPU as detected by the BIOS. It also allows the user to configure CPU settings.

► Socket 1 CPU Information/Socket 2 CPU Information

This submenu displays the following information regarding the CPUs installed in Socket 1/ Socket 2.

- Type of CPU
- CPU Signature
- Microcode Patch
- CPU Stepping
- Maximum / Minimum CPU Speed

- Processor Cores
- Intel HT (Hyper-Threading) Technology
- Intel VT-x Technology
- Intel SMX Technology
- L1 Data Cache / L1 Code Cache
- L2 Cache
- L3 Cache

CPU Speed

This item displays the speed of the CPU installed in Socket 1/Socket 2.

64-bit

This item indicates if the CPU installed in Socket 1 or Socket 2 supports 64-bit technology.

Clock Spread Spectrum

Select Enable to enable Clock Spectrum support, which will allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are **Disabled** and Enabled.

RTID (Record Types IDs)

This feature displays the total number of Record Type IDs for local and remote pools. The options are **Optimal** and Alternate.

Hyper-threading

Select Enabled to support Intel Hyper-threading Technology to enhance CPU performance. The options are **Enabled** and Disabled.

Active Processor Cores

Set to Enabled to use a processor's second core and above. (Please refer to Intel's website for more information.) The options are **All,** 1, 2, 4, and 6.

Limit CPUID Maximum

This feature allows the user to set the maximum CPU ID value. Enable this function to boot the legacy operating systems that cannot support processors with extended CPUID functions. The options are Enabled and **Disabled** (for the Windows OS).

Execute-Disable Bit (Available if supported by the OS & the CPU)

Select Enabled to enable the Execute Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. The default is **Enabled**. (Refer to Intel and Microsoft Web sites for more information.)

Intel® AES-NI

Select Enable to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Enabled** and Disabled.

MLC Streamer Prefetcher (Available when supported by the CPU)

If set to Enabled, the MLC (mid-level cache) streamer prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disabled and **Enabled**.

MLC Spatial Prefetch (Available when supported by the CPU)

If this feature is set to Disabled, The CPU prefetches the cache line for 64 bytes. If this feature is set to Enabled the CPU fetches both cache lines for 128 bytes as comprised. The options are Disabled and **Enabled**.

DCU Streamer Prefetcher (Available when supported by the CPU)

Select Enabled to support Data Cache Unit (DCU) prefetch of L1 data to speed up data accessing and processing in the DCU to enhance CPU performance. The options are Disabled and **Enabled**.

DCU IP Prefetcher

Select Enabled for DCU (Data Cache Unit) IP Prefetcher support, which will prefetch IP addresses to improve network connectivity and system performance. The options are **Enabled** and Disabled.

Intel® Virtualization Technology (Available when supported by the CPU)

Select Enabled to support Intel Virtualization Technology, which will allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are **Enabled** and Disabled.

Note: If there is any change to this setting, you will need to power off and restart the system for the change to take effect. Please refer to Intel's website for detailed information.)

▶ CPU Power Management Configuration

This submenu allows the user to configure the following CPU Power Management settings.

Power Technology

Select Energy Efficiency to support power-saving mode. Select Custom to customize system power settings. Select Disabled to disable power-saving settings. The options are Disabled, **Energy Efficient**, and Custom. If the option is set to Custom, the following items will display:

EIST (Available when Power Technology is set to Custom)

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disabled (GV3 Disabled), and **Enabled (GV3 Enabled)**. (**Note**: GV3 is Intel Speedstep support used on older platforms. Please refer to Intel's website for detailed information.)

Turbo Mode (Available when Power Technology is set to Custom)

Select Enabled to use the Turbo Mode to boost system performance. The options are **Enabled** and Disabled.

C1E Support (Available when Power Technology is set to Custom)

Select Enabled to enable Enhanced C1 Power State to boost system performance. The options are **Enabled** and Disabled.

CPU C3 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enabled and **Disabled.**

CPU C6 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. The options are **Enabled** and Disabled.

CPU C7 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C7 State (ACPI C3) to the operating system. CPU C7 State is a processor-specific low C-State. The options are **Enabled** and Disabled.

Package C-State limit (Available when Power Technology is set to Custom)

This feature allows the user to set the limit on the C-State package register. The options are C0, C2, **C6**, and No Limit.

Energy/Performance Bias

Use this feature to select an appropriate fan setting to achieve maximum system performance (with maximum cooling) or maximum energy efficiency with maximum power saving). The fan speeds are controlled by the firmware management via IPMI 2.0. The options are Performance, **Balanced Performance**, Balanced Energy, and Energy Efficient.

Factory Long Duration Power Limit

This item displays the power limit (in watts) set by the manufacturer during which long duration power is maintained.

Long Duration Power Limit

This item displays the power limit (in watts) set by the user during which long duration power is maintained. The default setting is 0.

Factory Long Duration Maintained

This item displays the period of time (in seconds) set by the manufacturer during which long duration power is maintained.

Long Duration Maintained

This item displays the period of time (in seconds) during which long duration power is maintained. The default setting is 0.

Recommended Short Duration Power

This item displays the short duration power settings (in watts) recommended by the manufacturer.

Short Duration Power Limit

During Turbo Mode, the system may exceed the processors default power setting and exceed the Short Duration Power limit. By increasing this value, the processor can provide better performance for short duration. This item displays the time period during which short duration power is maintained. The default setting is 0.

▶Chipset Configuration

▶North Bridge

This feature allows the user to configure the settings for the Intel North Bridge.

►Integrated IO Configuration

Intel® VT-d

Select Enabled to enable Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enabled** and Disabled.

Intel® I/OAT

Select Enabled to enable Intel I/OAT (I/O Acceleration Technology), which significantly reduces CPU overhead by leveraging CPU architectural improvements and freeing the system resource for other tasks. The options are Disabled and **Enabled**.

DCA Support

When set to Enabled, this feature uses Intel's DCA (Direct Cache Access) Technology to improve data transfer efficiency. The options are **Enabled** and Disabled.

IIO 1 PCIe Port Bifurcation Control

This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 1 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root Ports.

CPU1 Slot1 PCI-E 3.0 x8 Link Speed/ CPU1 Slot2 PCI-E 3.0 x8 Link Speed/ CPU1 Slot6 PCI-E 3.0 x8 Link Speed/CPU2 Slot3 PCI-E 3.0 x8 Link Speed/CPU2 Slot5 PCI-E 3.0 x8 Link Speed/CPU2 Slot5 PCI-E 3.0 x8 Link Speed

Select GEN1 for the device installed on the slot specified to support PCI-Exp Generation 1. Select GEN2 for the device installed on the slot specified to support PCI-Exp Generation 2. Select GEN3 for the device installed on the slot specified to support PCI-Exp Generation 3. The options are GEN1, GEN2, and **GEN3**.

IIO 2 PCIe Port Bifurcation Control

This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 2 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root ports.

▶QPI Configuration

Current QPI Link

This item displays the current status of the QPI Link.

Current QPI Frequency

This item displays the frequency of the QPI Link.

Isoc

Select Enabled to enable Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for virtualization technology. The options are Enabled and **Disabled**.

QPI (Quick Path Interconnect) Link Speed Mode

Use this feature to select data transfer speed for QPI Link connections. The options are Slow and Fast.

QPI Link Frequency Select

Use this feature to select the desired QPI frequency. The options are **Auto**, 6.4 GT/s, 7.2 GT/s, and 8.0 GT/s.

▶ DIMM Configuration

This section displays the following DIMM information.

Current Memory Mode

This item displays the current memory mode.

Current Memory Speed

This item displays the current memory speed.

Mirroring (Available when supported by the motherboard)

Memory mirroring creates a duplicate copy of the data stored in the memory to enhance data security.

Sparing (Available when supported by the motherboard)

Memory sparing enhances system reliability, availability, and serviceability.

▶ DIMM Information

CPU Socket 1 DIMM Information, CPU Socket 2 DIMM Information

The status of the memory modules detected by the BIOS will be displayed as detected by the BIOS.

Memory Mode

When Independent is selected, all DIMMs are available to the operating system. When Mirroring is selected, the motherboard maintains two identical copies of all data in memory for data backup. When Lock Step is selected, the motherboard uses two areas of memory to run the same set of operations in parallel. The options are **Independent**, Mirroring, and Lock Step.

DRAM RAPL Mode

RAPL (Running Average Power Limit) provides mechanisms to enforce power consumption limits on supported processors The options are Disabled, DRAM RAPL MODE0, and **DRAM RAPL MODE1**.

DDR Speed

Use this feature to force a DDR3 memory module to run at a frequency other than what is specified in the specification. The options are Force DDR3-800, Force DDR3-1066, Force DDR3-1333, Force DDR3-1600 and Force SPD, and **Auto**.

Channel Interleaving

This feature selects from the different channel interleaving methods. The options are **Auto**, 1 Way, 2 Way, 3, Way, and 4 Way.

Rank Interleaving

This feature allows the user to select a rank memory interleaving method. The options are **Auto**, 1 Way, 2 Way, 4, Way, and 8 Way.

Patrol Scrub

Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to Enabled, the IO hub will read and write back one cache line every 16K cycles, if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are **Enabled** and Disabled.

Demand Scrub

Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a

correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enabled to use Demand Scrubbing for ECC memory correction. The options are Enabled and **Disabled**.

Data Scrambling

Select Enabled to enable data scrambling to ensure data security and integrity. The options are Disabled and **Enabled**.

Device Tagging

Select Enabled to support device tagging. The options are **Disabled** and Enabled.

Thermal Throttling

Throttling improves reliability and reduces power consumption in the processor via automatic voltage control during processor idle states. The options are Disabled and **CLTT** (Closed Loop Thermal Throttling).

► South Bridge Configuration

This feature allows the user to configure the settings for the Intel PCH chip.

PCH Information

This feature displays the following PCH information.

Name: This item displays the name of the PCH chip.

Stepping: This item displays the status of the PCH stepping.

USB Devices: This item displays the USB devices detected by the BIOS.

All USB Devices

This feature enables all USB ports/devices. The options are Disabled and **Enabled**. (If set to Enabled, EHCI Controller 1 and Controller 2 will appear.)

EHCI Controller 1/EHCI Controller 2 (Available when All USB Devices is set to Enabled)

Select Enabled to enable EHCI (Enhanced Host Controller Interface) Controller 1 or Controller 2. The options are Disabled and **Enabled**.

Legacy USB Support (Available when USB Functions is not Disabled)

Select Enabled to support legacy USB devices. Select Auto to disable legacy support if USB devices are not present. Select Disabled to have USB devices available for EFI (Extensive Firmware Interface) applications only. The settings are **Enabled** Disabled, and Auto.

Port 60/64 Emulation

Select Enabled to enable I/O port 60h/64h emulation support for the legacy USB keyboard so that it can be fully supported by the operating systems that does not recognize a USB device. The options are Disabled and **Enabled**.

EHCI Hand-Off

This item is for operating systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When enabled, EHCI ownership change will be claimed by the EHCI driver. The options are **Disabled** and Enabled.

▶SATA Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of IDE or SATA devices and displays the following items.

SATA Port0~SATA Port5: The AMI BIOS displays the status of each SATA port as detected by the BIOS.

SATA Mode

Use this feature to configure SATA mode for a selected SATA port. The options are Disabled, IDE Mode, **AHCI Mode** and RAID Mode. The following are displayed depending on your selection:

IDE Mode

The following items are displayed when IDE Mode is selected:

Serial-ATA (SATA) Controller 0~1

Use this feature to activate or deactivate the SATA controller, and set the compatibility mode. The options for SATA Controller 0 are Disabled, Enhanced, and **Compatible**. The options for SATA Controller 1 are Disabled and **Enhanced**.

AHCI Mode

The following items are displayed when the AHCI Mode is selected.

Aggressive Link Power Management

When Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link in a low power mode during extended periods of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Enabled** and Disabled.

Port 0~5 Hot Plug

Select Enabled to enable hot-plug support for a particular port, which will allow the user to change a hardware component or device without shutting down the system. The options are **Enabled** and Disabled.

Staggered Spin Up

Select Enabled to enable Staggered Spin-up support to prevent excessive power consumption caused by multiple HDDs spinning-up simultaneously. The options are Enabled and **Disabled**.

RAID Mode

The following items are displayed when RAID Mode is selected:

SATA RAID Option ROM

Use this feature to determine which SATA RAID device the system will boot from. The options are **Legacy** and EFI.

Port 0~5 Hot Plug

Select Enabled to enable hot-plug support for the particular port. The options are **Enabled** and Disabled.

► PCIe/PCI/PnP Configuration

PCI ROM Priority

Use this feature to select the Option ROM to boot the system when there are multiple Option ROMs available in the system. The options are **Legacy ROM** and EFI Compatible ROM.

PCI Latency Timer

Use this feature to set the latency Timer of each PCI device installed on a PCI bus. Select 64 to set the PCI latency to 64 PCI clock cycles. The options are 32, **64**, 96, 128, 160, 192, 224 and 248.

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)

Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and **Disabled**.

PERR# Generation

Select Enabled to allow a PCI device to generate a PERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**.

SERR# Generation

Select Enabled to allow a PCI device to generate an SERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**.

Maximum Payload

Select Auto to allow the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes and 256 Bytes.

Maximum Read Request

Select Auto to allow the system BIOS to automatically set the maximum Read Request size for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

ASPM Support

This feature allows the user to set the Active State Power Management (ASPM) level for a PCI-E device. Select Force L0s to force all PCI-E links to operate at L0s state. Select Auto to allow the system BIOS to automatically set the ASPM level for the system. Select Disabled to disable ASPM support. The options are **Disabled**, Force L0s, and Auto.

Warning: Enabling ASPM support may cause some PCI-E devices to fail!

CPU1 Slot 1 PCI-E 3.0 x8 OPROM, CPU1 Slot 2 PCI-E 3.0 x8 OPROM, CPU2 Slot 3 PCI-E 3.0 x8 OPROM, CPU2 Slot 4 PCI-E 3.0 x8 OPROM, CPU2 Slot 5 PCI-E 3.0 x8 OPROM, CPU1 Slot 6 PCI-E 3.0 x 8 OPROM

Select Enabled to enable Option ROM support to boot the computer using a device installed on the slot specified above. The options are **Enabled** and Disabled.

Onboard LAN Option ROM Select

Select iSCSI to use the iSCSI Option ROM to boot the computer using a network device. Select PXE (Preboot Execution Environment) to use an PXE Option ROM to boot the computer using a network device. The options are **PXE** and iSCSI.

Load Onboard LAN1~LAN4 Option ROM

Select Enabled to enable the onboard LAN1 Option ROM~LAN4 Option ROM. This is to boot the computer using a network device. The default setting for LAN1 Option ROM is **Enabled**, and the default setting for LAN2~LAN4 Option ROM is **Disabled**.

Load Onboard SAS Option ROM

Select Enabled to use the onboard SAS Option ROM to boot the computer using a SAS device. The options are **Enabled** and Disabled.

VGA Priority

This feature allows the user to select the graphics adapter to be used as the primary boot device. The options are **Onboard**, and Offboard.

Network Stack

Select Enabled enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and **Disabled**.

▶ Super IO Configuration

Super IO Chip: This item displays the Super IO chip used in the motherboard.

► Serial Port 1 Configuration

Serial Port

Select Enabled to enable serial port 1. The options are **Enabled** and Disabled.

Device Settings

This item displays the settings of Serial Port 1.

Change Settings

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1. Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4; IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12; IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12; IO=2E8h, and IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12.

Device Mode

Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed.

► Serial Port 2 Configuration

Serial Port

Select Enabled to enable serial port 2. The options are Enabled and Disabled.

Device Settings

This item displays the settings of Serial Port 2.

Change Settings

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 2. Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4; IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12; IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12; and IO=2E8h, and IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12.

Device Mode

Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed.

Serial Port 2 Attribute

Use this feature to select the attribute for this serial port. The options are **SOL** (Serial Over LAN), and COM.

► Serial Port Console Redirection

COM1, COM2/SOL

These two submenus allow the user to configure the following Console Redirection settings for a COM Port specified by the user.

Console Redirection

Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and Disabled. The default setting for COM1 is **Disabled**, and for COM2/SOL is **Enabled**.

▶ Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8, and ANSI.

Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the

client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 Bits and 8 Bits.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control

This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Enabled** and Disabled.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and Enabled.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are Disabled and **Enabled**.

Legacy OS Redirection Resolution

Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and **80x25**.

Putty KeyPad

This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, LINUX, XTERMR6, SC0, ESCN, and VT400.

Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)

The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

Console Redirection (for EMS)

Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and **Disabled**.

► Console Redirection Settings (for EMS)

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port

The feature selects a serial port used by the Microsoft Windows Emergency Management Services (EMS) to communicate with a remote server. The options are **COM1** and COM2/SOL.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per Second

This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second).

Flow Control

This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

Data Bits, Parity, Stop Bits

The status of these features is displayed.

► ACPI Settings

Use this feature to configure Advanced Configuration and Power Interface (ACPI) power management settings for your system.

ACPI Sleep State

Use this feature to select the ACPI State when the system is in sleep mode. Select S1 (CPU_Stop_Clock) to erase all CPU caches and stop executing instructions. Power to the CPU(s) and RAM is maintained, but RAM is refreshed. Select Suspend Disabled to use power-reduced mode. Power will only be supplied to limited components (such as RAMs) to maintain the most critical functions of the system. The options are Suspend Disabled and S1 (CPU_Stop_Clock).

NUMA (NON-Uniform Memory Access)

This feature enables the Non-Uniform Memory Access ACPI support. The options are **Enabled** and Disabled.

High Precision Event Timer

Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback, reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and Disabled.

► Trusted Computing (Available when a TPM device is detected by the BIOS)

Configuration

TPM Support

Select Enabled on this item and enable the TPM jumper on the motherboard to enable TPM support to improve data integrity and network security. The options are **Enabled** and Disabled.

TPM State

Select Enabled to enable TPM security settings to improve data integrity and network security. The options are Disabled and **Enabled**.

Pending Operation

Use this item to schedule an operation for the security device. The options are **None**, Enable Take Ownership, Disable Take Ownership, and TPM Clear.

Note: During restart, the computer will reboot in order to execute the pending operation and change the state of the security device.

Current Status Information: This item displays the information regarding the current TPM status.

TPM Enable Status

This item displays the status of TPM Support to indicate if TPM is currently enabled or disabled.

TPM Active Status

This item displays the status of TPM Support to indicate if TPM is currently active or deactivated.

TPM Owner Status

This item displays the status of TPM Ownership.

►Intel TXT (LT-SX) Configuration

Intel TXT (LT-SX) Hardware Support

This feature indicates if the following hardware components support the Intel Trusted Execution Technology.

CPU: TXT (Trusted Execution Technology) Feature

Chipset: TXT (Trusted Execution Technology) Feature

Intel TXT (LT-SX) Configuration

This feature displays the following TXT configuration setting.

TXT (LT-SX) Support: This item indicates if the Intel TXT support is enabled or disabled. The default setting is **Disabled**.

Intel TXT (LT-SX) Dependencies

This feature displays the features that need to be enabled for the Intel Trusted Execution Technology to work properly in the system.

VT-d Support: Intel Virtualization Technology with Direct I/O support

VT Support: Intel Virtualization Technology support

TPM Support: Trusted Platform support

TPM State: Trusted Platform state

► ME Subsystem

This feature displays the following ME Subsystem Configuration settings.

ME BIOS Interface Version

ME Version

iSCSI Configuration: This item displays iSCSI configuration information:

iSCSI Initiator Name

This item displays the name of the iSCSI Initiator, which is a unique name used in the world. The name must use IQN format. The following actions can also be performed:

- Add an Attempt
- Delete Attempts
 - Commit/Discard Changes and Exit
- Change Attempt Order
 - Commit/Discard Changes and Exit

Intel® Ethernet Controller I350 Gigabit Network Connection: These items display the following information on the Intel I350 Gigabit network connections.

▶NIC Configuration

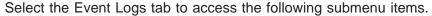
Link Speed

Use this feature to change the link speed and duplex for the current port. The options are **AutoNeg**, 10Mbps Half, 10Mbps Full, 100Mbps Half, and 100Mbps full.

Wake on LAN

Select enabled to wake the system with a magic packet. The options are **Enabled** and Disabled.

Blink LEDs


This feature allows the user to specify the duration for LEDs to blink. The range is from $0 \sim 15$ seconds. The default setting is $\mathbf{0}$.


PORT CONFIGURATION INFORMATION

This section displays the following port information:

- UEFI Driver
- Adapter PBA
- Chip Type
- PCI Device ID
- PCI Bus:Device:Function
- Link Status
- Factory MAC Address / Alternate MAC Address

7-4 Event Logs

▶ Change SMBIOS Event Log Settings

This feature allows the user to configure SMBIOS Event settings.

Enabling/Disabling Options

SMBIOS Event Log

Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are **Enabled** and Disabled.

Runtime Error Logging Support

Select Enabled to support Runtime Error Logging. The options are **Enabled** and Disabled.

Memory Correctable Error Threshold

This feature allows the user to enter the threshold value for correctable memory errors. The default setting is **10**.

PCI Error Logging Support

Select Enabled to support error event logging for PCI slots. The options are Enabled and **Disabled**.

Erasing Settings

Erase Event Log

Select Enabled to erase the SMBIOS (System Management BIOS) Event Log, which is completed before a event logging is initialized upon system reboot. The options are **No**, Yes, Next reset, and Yes, Every reset.

When Log is Full

Select Erase Immediately to immediately erase SMBIOS error event logs that exceed the limit when the SMBIOS event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately.

SMBIOS Event Log Standard Settings

Log System Boot Event

Select Enabled to log system boot events. The options are Disabled and Enabled.

MECI (Multiple Event Count Increment)

Enter the increment value for the multiple event counter. Enter a number from 1 to 255. The default setting is 1.

METW (Multiple Event Count Time Window)

This item allows the user to decide how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number from 0 to 99. The default setting is **60**.

View SMBIOS Event Log

This item allows the user to view the event in the SMBIOS event log. Select this item and press <Enter> to view the status of an event in the log.

Date/Time/Error Code/Severity

7-5 IPMI

Select the IPMI (Intelligent Platform Management Interface) tab to access the following submenu items.

IPMI Firmware Revision

This item indicates the IPMI firmware revision used in your system.

IPMI Status

This item indicates the status of the IPMI firmware installed in your system.

►System Event Log

Enabling/Disabling Options

SEL Components

Select Enabled for all system event logging at bootup. The options are **Enabled** and Disabled.

Erasing Settings

Erase SEL

Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**, Yes, On next reset, and Yes, On every reset.

When SEL is Full

This feature allows the user to decide what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and Erase Immediately.

Custom EFI Logging Options

Log EFI Status Codes

Select Enabled to log EFI (Extensible Firmware Interface) Status Codes, Error Codes or Progress Codes. The options are **Enabled** and Disabled.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

▶BMC Network Configuration

LAN Channel 1: This feature allows the user to configure the settings for LAN1 Port.

Update IPMI LAN Configuration

This feature allows the BIOS to implement any IP/MAC address changes at the next system boot. If the option is set to Yes, any changes made to the settings below will take effect when the system is rebooted. The options are **No** and Yes.

Configuration Address Source

This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **DHCP** and Static. The following items are assigned IP addresses automatically if DHCP is selected, or can be configured manually if Static is selected.

Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255.

Station MAC Address

This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Gateway IP Address

This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

7-6 Boot

This submenu allows the user to configure the following boot settings for the system.

Boot Option Priorities

Boot Option #1, Boot Option #2, Boot Option #3, etc.

Use this feature to specify the sequence of boot device priority.

Network Devices, Hard Disk Drives

Use these options to set the order of the legacy network and hard drive devices detected by the motherboard.

▶ Delete Boot Option

This feature allows the user to select a EFI boot device to delete from the boot priority list.

Delete Boot Option

Select the desired boot device to delete.

7-7 Security

This menu allows the user to configure the following security settings for the system.

Password Check

Use this feature to determine when a password entry is required. Select Setup to require the password only when entering setup. Select Always to require the password when entering setup and on each boot. The options are **Setup** and Always.

Administrator Password

Use this feature to set the Administrator Password which is required to enter the BIOS setup utility. The length of the password should be from 3 to 20 characters long.

7-8 Save & Exit

This submenu allows the user to configure the Save and Exit settings for the system.

Discard Changes and Exit

Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes.

Save Changes and Reset

When you have completed the system configuration changes, select this option to save the changes and reboot the computer so that the new system configuration settings can take effect. Select Save Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes.

Save Options

Save Changes

Select this option and press <Enter> to save all changes you've done so far and return to the AMI BIOS utility Program. When the dialog box appears, asking you if you want to save configuration, select **Yes** to save the changes, or select No to return to the BIOS without making changes.

Discard Changes

Select this feature and press <Enter> to discard all the changes and return to the BIOS setup. When the dialog box appears, asking you if you want to load previous values, select **Yes** to load the values previous saved, or select No to keep the changes you've made so far.

Restore Optimized Defaults

Select this feature and press <Enter> to load the optimized default settings that help optimize system performance. When the dialog box appears, asking you if you want to load optimized defaults, select **Yes** to load the optimized default settings, or select No to abandon optimized defaults.

Save as User Defaults

Select this feature and press <Enter> to save the current settings as the user's defaults. When the dialog box appears, asking you if you want to save values as user's defaults, select **Yes** to save the current values as user's default settings, or select No to keep the defaults previously saved as the user's defaults.

Restore User Defaults

Select this feature and press <Enter> to load the user's defaults previously saved in the system. When the dialog box appears, asking you if you want to restore user's defaults, select **Yes** to restore the user's defaults previously saved in the system, or select No to abandon the user's defaults that were previously saved.

Boot Override

This feature allows the user to override the Boot Option Priorities setting in the Boot menu, and instead boot the system with one of the listed devices. This is a one-time override.

Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed at each system boot, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue to boot. The error messages normally appear on the screen.

Fatal errors will not allow the system to continue with bootup procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error.

BIOS Error Beep Codes									
Beep Code/LED	Error Message	Description							
1 beep	Refresh	Ready to boot							
5 short beeps + 1 long beep	Memory error	No memory detected in the system							
5 beeps	No Con-In or No Con-Out devices	Con-In: USB or PS/2 key- board, PCI or Serial Console Redirection, IPMI KVM or SOL Con-Out: Video Controller, PCI or Serial Console Redirection, IPMI SOL							
X9 IPMI Error Codes									
1 Continuous Beep	System OH	System Overheat							

9	HPFR!	STOR	AGESYSTE	M 6047R	F1R79I	/6047R.	F1R72I	2K Hear's	e Manua
O	UPER	S I UK/	1GE3131E	IVI 6047K	-E1K/ZL	_/6U4/K·	·ETR/ZL	_zk users	s ivianua

Notes

Appendix B

System Specifications

Processors

Single or dual Intel® Xeon E5-2600 Series processors

Note: Please refer to our web site for a complete listing of supported processors.

Chipset

Intel C602J chipset

BIOS

128 Mb AMI® SPI Flash ROM

Memory Capacity

Sixteen DIMM sockets supporting up to 512 GB of RDIMM, ECC LRDIMM or ECC/non-ECC UDIMM DDR3-1600/1333/1066/800 type memory

Note: see Section 5-6 for details.

Drive Bays

Thirty-six hot-swap drive bays to house SATA drives (24 in front, 12 in rear)

Note: Please refer to Chapter 6 for options on installing internal fixed HDDs and optional HDD cage.

Peripheral Drive Bays

One slim DVD-ROM drive

Expansion Slots

Four PCI-E x8 low-profile expansion (add-on) cards

Serverboard

X9DRD-LN4F-JBOD (Extended ATX form factor)

Dimensions: 13 x 12 in (330.2 x 340.8 mm)

Chassis

6047R-E1R72L: SC847DE16-R1K28LPB, 4U rackmount 6047R-E1R72L2K: SC847DE16-R2K02LPB, 4U rackmount

Dimensions (both): (WxHxD) 17.2 x 7 x 35 in. (437 x 178 x 889 mm)

Weight

Gross: 104 lbs. (47.2 kg.)

System Cooling

Seven 9-cm system fans

Power Supply

6047R-E1R72L:

Rated Output Power: 1280W (Part# PWS-1K28P-SQ)

Rated Output Voltages: 1000W: +12V (83A), +5Vsb (4A), 1280W: +12V

(106.7A), +5Vsb (4A) 6047R-E1R72L2K:

Rated Output Power: 2000W (Part# PWS-2K02P-1R)

Rated Output Voltages: 2000W: +12V (166.7A), +5Vsb (4A), 1280W: +12V

(106.7A), +5Vsb (4A)

System Input Requirements

6047R-E1R72L:

AC Input Voltage: 100 - 240V AC auto-range

Rated Input Current: 1000W output @ 100-140V: 12 - 8A, 1280W output @ 180-

240V: 8 - 6A

Rated Input Frequency: 50 to 60 Hz

6047R-E1R72L2K:

AC Input Voltage: 100 - 240V AC auto-range

Rated Input Current: 1100W output @ 100-120V: 12.9 - 10A, 2000W output @

220-240V: 10 - 9.2A

Rated Input Frequency: 50 to 60 Hz

Operating Environment

Operating Temperature: 10° to 35° C (32° to 95° F)

Non-operating Temperature: -40° to 70° C (-40° to 158° F)

Operating Relative Humidity: 8% to 90% (non-condensing)

Non-operating Relative Humidity: 5% to 95% (non-condensing)

Regulatory Compliance

Electromagnetic Emissions: FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22 Class A

Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe)

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

(continued from front)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.