Content | 1.1 COMMANDS FOR LAYER 3 INTERFACE | 1-1 | |--|------| | 1.1.1 bandwidth | | | 1.1.2 description | | | 1.1.3 description (VRF mode) | 1-2 | | 1.1.4 interface loopback | 1-2 | | 1.1.5 interface vlan | 1-3 | | 1.1.6 ip vrf | 1-3 | | 1.1.7 ip vrf forwarding vrfName | 1-4 | | 1.1.8 no interface IFNAME | 1-4 | | 1.1.9 rd | 1-5 | | 1.1.10 route-target | 1-5 | | 1.1.11 show ip route vrf | 1-6 | | 1.1.12 show ip vrf | 1-6 | | 1.1.13 shutdown | 1-7 | | 1.2 COMMANDS FOR IPv4/v6 CONFIGURATION | 1-8 | | 1.2.1 clear ip traffic | | | 1.2.2 clear ipv6 neighbor | | | 1.2.3 debug ip icmp | 1-8 | | 1.2.4 debug ip packet | 1-9 | | 1.2.5 debug ipv6 packet | 1-9 | | 1.2.6 debug ipv6 icmp | 1-10 | | 1.2.7 debug ipv6 nd | 1-10 | | 1.2.8 debug ipv6 tunnel packet | 1-11 | | 1.2.9 description | 1-12 | | 1.2.10 ipv6 proxy enable | 1-12 | | 1.2.11 ip address | 1-12 | | 1.2.12 ipv6 address | 1-13 | | 1.2.13 ipv6 route | 1-13 | | 1.2.14 ipv6 redirect | 1-14 | | 1.2.15 ipv6 nd dad attempts | 1-15 | | 1 2 16 inv6 nd ns-interval | 1-15 | | | 1.2.17 ipv6 nd suppress-ra | 1-16 | |-----|--|------| | | 1.2.18 ipv6 nd ra-lifetime | 1-16 | | | 1.2.19 ipv6 nd min-ra-interval | 1-16 | | | 1.2.20 ipv6 nd max-ra-interval | 1-17 | | | 1.2.21 ipv6 nd prefix | 1-17 | | | 1.2.22 ipv6 nd ra-hoplimit | 1-18 | | | 1.2.23 ipv6 nd ra-mtu | 1-18 | | | 1.2.24 ipv6 nd reachable-time | 1-19 | | | 1.2.25 ipv6 nd retrans-timer | 1-19 | | | 1.2.26 ipv6 nd other-config-flag | 1-19 | | | 1.2.27 ipv6 nd managed-config-flag | 1-20 | | | 1.2.28 ipv6 neighbor | 1-20 | | | 1.2.29 interface tunnel | 1-20 | | | 1.2.30 show ip interface | 1-21 | | | 1.2.31 show ip traffic | 1-21 | | | 1.2.32 show ipv6 interface | 1-23 | | | 1.2.33 show ipv6 route | 1-25 | | | 1.2.34 show ipv6 neighbors | 1-26 | | | 1.2.35 show ipv6 traffic | 1-28 | | | 1.2.36 show ipv6 redirect | 1-29 | | | 1.2.37 show ipv6 tunnel | 1-29 | | | 1.2.38 tunnel source | 1-30 | | | 1.2.39 tunnel destination | 1-30 | | | 1.2.40 tunnel nexthop | 1-30 | | | 1.2.41 tunnel 6to4-relay | 1-31 | | | 1.2.42 tunnel mode | 1-31 | | 1.3 | COMMANDS FOR NETWORK MANAGEMENT PORT CONFIGURATION | 1-32 | | | 1.3.1 duplex | 1-32 | | | 1.3.2 interface ethernet | 1-32 | | | 1.3.3 ip address | 1-32 | | | 1.3.4 shutdown | 1-32 | | | 1.3.5 speed | 1-33 | | 1.4 | COMMANDS FOR IP ROUTE AGGREGATION | 1-33 | | | 1.4.1 ip fib optimize | 1-33 | | 1 5 | | | | 1.0 | COMMANDS FOR URPF | 1-54 | | | 1.5.1 debug urnf | 1-34 | | | 1.5.2 ip urpf enable | . 1-34 | |----|--------------------------------------|--| | | 1.5.3 show urpf rule ipv4 num | . 1-35 | | | 1.5.4 show urpf rule ipv6 num | . 1-35 | | | 1.5.5 show urpf rule ipv4 | . 1-35 | | | 1.5.6 show urpf rule ipv6 | . 1-35 | | | 1.5.7 show urpf | | | | 1.5.8 urpf enable | . 1-36 | | | 1.6 COMMANDS FOR ARP CONFIGURATION | .1-36 | | | 1.6.1 arp | . 1-36 | | | 1.6.2 clear arp-cache | . 1-37 | | | 1.6.3 clear arp traffic | . 1-37 | | | 1.6.4 debug arp | | | | 1.6.5 ip proxy-arp | | | | 1.6.6 l3 hashselect | | | | 1.6.7 show arp | | | | 1.6.8 show arp traffic | . 1-40 | | | | 1 11 | | | 1.7 COMMANDS FOR L3 STATION MOVEMENT | . 1 -4 1 | | | 1.7 COMMANDS FOR L3 STATION MOVEMENT | | | CI | | . 1-41 | | | 1.7.1 3-station-move | . 1-41
ON | | | 1.7.1 l3-station-move | . 1-41
ON | | | 1.7.1 3-station-move | . 1-41
ON
2-1 | | | 1.7.1 3-station-move | . 1-41
ON
2-1
2-1 | | | 1.7.1 3-station-move | . 1-41
ON
2-1
2-1 | | | 1.7.1 13-station-move | . 1-41
ON
2-1
2-1
2-2 | | | 1.7.1 13-station-move | . 1-41
ON
2-1
2-1
2-2 | | | 1.7.1 I3-station-move | . 1-41
ON
2-1
2-1
2-2
2-2 | | | 1.7.1 I3-station-move | . 1-41
ON
2-1
2-1
2-2
2-3 | | | 1.7.1 13-station-move | . 1-41 ON2-12-12-22-32-3 | | | 1.7.1 I3-station-move | . 1-41 ON2-12-12-22-32-4 | | | 1.7.1 I3-station-move | . 1-41 ON2-12-12-22-32-42-4 | | 2.12 ANTI-ARPSCAN IP-BASED ARP-TO-CPU SPEED <pps< th=""><th>>2-6</th></pps<> | >2-6 | |---|---------------------| | 2.13 CLEAR ANTI-ARPSCAN ATTACK-LIST {IP < IP ADDRE | :SS> ALL}2-6 | | 2.14 CLEAR ANTI-ARPSCAN ATTACK-HISTORY-LIST {IP < | P Address> ALL}2-6 | | 2.15 CLEAR ANTI-ARPSCAN SPEED-LIMIT< IP ADDRESS: | >2-7 | | 2.16 CLEAR ANTI-ARPSCAN IP-ISOLATE <ip address=""></ip> | 2-7 | | 2.17 DEBUG ANTI-ARPSCAN | 2-7 | | 2.18 SHOW ANTI-ARPSCAN | 2-8 | | 2.19 SHOW ANTI-ARPSCAN IP-BASED ATTACK-LIST [HIST | ORY]2-9 | | 2.20 SHOW ANTI-ARPSCAN IP-BASED RUNNING-CONFIG. | 2-10 | | CHAPTER 3 COMMANDS FOR PREVENTING | GARP, ND | | SPOOFING | 3-1 | | 3.1 IP ARP-SECURITY UPDATEPROTECT | 3-1 | | 3.2 IPV6 ND-SECURITY UPDATEPROTECT | 3-1 | | 3.3 IP ARP-SECURITY LEARNPROTECT | 3-2 | | 3.4 IPV6 ND-SECURITY LEARNPROTECT | 3-2 | | 3.5 IP ARP-SECURITY CONVERT | 3-3 | | 3.6 IPV6 ND-SECURITY CONVERT | 3-3 | | 3.7 CLEAR IP ARP DYNAMIC | 3-3 | | 3.8 CLEAR IPV6 ND DYNAMIC | 3-4 | | CHAPTER 4 COMMAND FOR ARP GUARD | 4-1 | | 4.1 ARP-GUARD IP | 4-1 | | CHAPTER 5 COMMAND FOR ARP LOCAL PI | ROXY5-1 | | 5.1 IP LOCAL PROXY-ARP | 5-1 | | CHAPTER 6 COMMANDS FOR GRATUITOUS | SARP | | CONFIGURATION | 6-1 | | 6.1 IP GRATUITOUS-ARP | 6-1 | | 6.2 SHOW IP GRATUITOUS-ARP | 6-1 | |--|-----| | CHAPTER 7 COMMANDS FOR KEEPALIVE GATEWAY | 7-1 | | 7.1 KEEPALIVE GATEWAY | 7-1 | | 7.2 SHOW IP INTERFACE | 7-1 | | 7.3 SHOW KEEPALIVE GATEWAY | 7-2 | | CHAPTER 8 COMMANDS FOR UFT | 8-1 | | 8.1 Show system working mode | 8-1 | | 8.2 System working mode | 8-1 | # Chapter 1 Commands for Layer 3 Forwarding #### 1.1 Commands for Layer 3 Interface #### 1.1.1 bandwidth Command: bandwidth <bandwidth> no bandwidth **Function:** Configure the bandwidth for Interface vlan. The "**no bandwidth**" command recovery the default value. The bandwidth of interface vlan is used to protocol account but not control the bandwidth of port. For instance, it is use the interface bandwidth (cost=10^8/bandwidth) when OSPF account the link cost, so change the bandwidth can result in OSPF link cost changed. **Parameters:** < bandwidth > is the bandwidth for interface vlan. Range from 1 bits to 10000000000 bits. It is can use unit "k, m, g". There are no decimal numbers after conversion. Command mode: VLAN Interface Mode **Default:** The default bandwidth for interface VLAN is 100,000,000bit. **Usage Guide:** This command only can be used at interface VLAN mode. The conversion of unit: 1g=1,000m=1,000,000k=1,000,000,000bit. **Example:** Configure the bandwidth for vlan1 is 50,000,000bit. Switch(Config-if-Vlan1)#bandwidth 50m #### 1.1.2 description Command: description < text> no description **Function:** Configure the description information of VLAN interface. The no command will cancel the description information of VLAN interface. Parameter: <text> is the description information of VLAN interface, the length should not exceed 256 characters. **Default:** Do not configure. Doraciti Do not connigare. Command Mode: VLAN interface mode Usage Guide: The description information of VLAN interface behind description and shown under the configured VLAN. **Example:** Configure the description information of VLAN interface as test vlan. Switch(config)#interface vlan 2 Switch(config-if-vlan2)#description test vlan ## 1.1.3 description (VRF mode) Command: description <text> no description **Function:** Configure the VRF description information to record the relation of VPN instance and any. The no operation of the command will cancel the VPN description information. **Parameter:** < text>: Description text, the ranging from 1 to 256 characters. Default: Not configured. Command Mode: VRF mode. **Usage Guide:** VRF description information behind description and shown under the configured VRF to supply the relative information. **Example:** Configure VRF description information as "associate with VRF-B VRF-C". Switch(config)#ip vrf VRF-A Switch(config-vrf)#description associate with VRF-B VRF-C ## 1.1.4 interface loopback Command: interface loopback < loopback-id> no interface loopback < loopback-id> **Function:** Create a Loopback interface; the no operation of this command will delete the specified Loopback interface. Parameters: < loopback-id> is the ID of the new created Loopback interface. **Default:** There is no Loopback interface in factory defaults. **Command Mode:** Global Configuration Mode. Usage Guide: IDs of the VLANs taken up by a Loopback interfaces start from 1006. If Loopback take up a VLAN whose ID is larger than or equal with1006, users are forbidden to configure the corresponding VLAN. If a VLAN after VLAN 1006 is already configured, such as VLAN 1006, then the Loopback interface will take up the first available VLAN after that VLAN, such as VLAN 1007. **Examples:** Enter the interface configuration mode of Loopback 1. Switch(config)#interface loopback 1 Switch(Config-if-Loopback1)# #### 1.1.5 interface vlan Command: interface vlan <vlan-id> no interface vlan <vlan-id> Function: Create a VLAN interface (a Layer 3 interface); the "no interface vlan <vlan-id>" command deletes the Layer 3 interface specified. Parameters: <*vlan-id*> is the VLAN ID of the established VLAN, ranging from 1 to 4094. **Default:** No Layer 3 interface is configured upon switch shipment. Command mode: Global Mode **Usage Guide:** When creating a VLAN interface (Layer 3 interface), VLANs should be configured first, for details, see the VLAN chapters. When VLAN interface (Layer 3 interface) is created with this command, the VLAN interface (Layer 3 interface) configuration mode will be entered. After the creation of the VLAN interface (Layer 3 interface), interface vlan command can still be used to enter Layer 3 Port Mode. **Example:** Create a VLAN interface (layer 3 interface). Switch(config)#interface vlan 1 Switch(Config-if-Vlan1)# #### 1.1.6 ip vrf Command: ip vrf < vrf-name> no ip
vrf < vrf-name> Function: Configure the corresponding VPN instance, the no command cancel this VPN instance. Parameter: <vrf-name>: Configure the name of VPN instance, the ranging from 1 to 64. **Default:** Not configured. **Command Mode:** Global configuration mode. **Usage Guide:** Configure the corresponding VPN instance. There is no default VPN instance on PE, a PE can create multiple VPN instances and the name distinguishes the capital letter and small letter. Please pay attention: VPN instance takes effect after configure RD. #### **Example:** Switch(config)#ip vrf VRF-A Switch(config-vrf)# #### 1.1.7 ip vrf forwarding vrfName Command: ip vrf forwarding <vrfName> [fallback global] no ip vrf forwarding < vrfName> [fallback global] **Function:** Relate the interface to the specific VRF and set fallback global option, if the interface as the ingress of the IP packet, querying the binding VRF route table is failure and hop to the global route table to query. **Parameter:** <*vrf-name>*: Configure the name of VPN instance, the length is less than 32 characters. **fallback** global: Query the global route table. After fallback global option is specified, if querying the binding VRF route table is failure, hop to the global route table to query. **Default: Bind** the interface to the master VRF. **Command Mode:** Interface configuration mode. Usage Guide: If the interface needs to access internet, this command can be configured and an interface bind a VRF only, but a VRF can bind multiple interfaces. It supports the binding between IGP record interface and VRF, the received route from the binding interface will join in the corresponding VRF route table, but in default, the interface is not related with any VRF, it belongs to the public interface. #### **Example:** Switch(config)#int vlan 9 Switch(Config-if-Vlan9)#ip vrf forwarding vpn1 fallback global #### 1.1.8 no interface IFNAME Command: no interface IFNAME Function: Delete the interface, deal with the interface vlan and interface loopback only. **Parameters:** IFNAME: interface name. Command Mode: Global mode. **Usage Guide:** This command is used to delete the layer 3 interface. It can deal with the situation that the interface name is spelt in special way. IFNAME can match multiple ways, such as vlan1, Vlan1, v1, V1 and etc. **Example:** Delete interface vlan1. (config)# no interface vlan1 #### 1.1.9 rd Command: rd <ASN:nn_or_IP-address:nn> Function: Configure RD(Route Distinguish) of VRF. Parameter: ASN:nn_or_IP-address:nn is the IP address format of the route identification label. **Default:** Not configured. **Command Mode:** VRF mode **Usage Guide:** The configured RD is for identifying different VPN each of which shall have a unique RD, VPN instance implement the space independence and address repeat through RD. But attention should be paid on that this setting is made up by AS number and a arbitrary number and RD can not be deleted directly. #### Example: Switch (config)#ip vrf VRF-A Switch (config-vrf)# rd 300:3 Switch (config-vrf)# ## 1.1.10 route-target Command: route-target {import | export | both} < rt-value> no route-target {import | export | both} < rt-value> **Function:** Configure the Route-Target of the specific VRF, the no command will delete this configuration. Parameter: import: Filter the route to judge whether VPN route join in this VRF. **export:** The additional Route-Target when this VRF route is sent to the outside as a VPNv4 route, it is used to filterthe port. **both:** import and export use the same Route-Target value. <rt-value>: The Route-Target value. Default: Not configured. Command Mode: VRF mode Usage Guide: RT is a BGP extended community, is used to filter the VPN route and implement the control of the VPN member relation of the direct-link site and the route rule. For the configured import rules, after check the route received by all BGP, add the matched route to BGP and send the route update message to BGP private network neighbor. For the configured export rules, after check all BGP route stored by BGP, add a export route-target to these routes and send the route update message to all public network. If import route-target of other VRF matches with this export route-target, copy the route to the matched VRF and send the route update to BGP private network neighbor. #### **Example:** Switch (config)#ip vrf VRF-A Switch (config-vrf)# route-target both 100:1 Switch (config-vrf)# #### 1.1.11 show ip route vrf Command: show ip route vrf <vrf-name> [bgp | datebase] **Parameter:** < vrf-name>: VRF name is created by if vrf < vrf-name>. bgp: Import the route through BGP. database: The database of IP route table. Default: None. Command Mode: Any modes. Usage Guide: Show the specific route protocol. **Example:** Switch#show ip route vrf vrf-a bgp Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 100:10 (Default for VRF test) *> 11.1.1.0/24 11.1.1.64 0 0 200 ? *> 20.1.1.0/24 11.1.1.64 0 0 200 ? ## 1.1.12 show ip vrf Command: show ip vrf [<vrf-name>] Function: Show the related RIP instance information with VPN route/forwarding instance, it can show fallback global option. **Parameter:** < vrf-name>: Specify the name of VPN route/forwarding instance. Default: Not display. Command Mode: Any modes. **Usage Guide:** This command exists in other route protocol. When using this command, the information of other related route protocol will be shown. **Example:** Show the related RIP instance information with VRF route/forwarding instance of IPI. Switch# show ip vrf IPI VRF IPI, FIB ID 1 Router ID: 11.1.1.1 (automatic) Interfaces: Vlan1 ! VRF IPI; (id=1); RIP enabled Interfaces: Ethernet1/8 Name Interfaces IPI Vlan1 Name Default RD Interfaces #### 1.1.13 shutdown ΙΡΙ Command: shutdown no shutdown **Function:** Shut down the specified VLAN interface of the switch. The no operation of the command will enable the VLAN interface. Vlan1 Command Mode: VLAN Interface Configuration Mode. **Default:** The VLAN interface is enabled by default. **Usage Guide:** While shutting down the VLAN interface of the switch, it will not send data frames. If this interface needs to obtain an IP address via BOOTP/DHCP protocol, it should be enabled. **Example:** Enable the VLAN1 interface of the switch. Switch(Config-if-Vlan1)#no shutdown #### 1.2 Commands for IPv4/v6 configuration #### 1.2.1 clear ip traffic Command: clear ip traffic Function: Clear the statistic information of IP protocol. Parameter: None. Command mode: Admin Mode. Default: None. **Usage guide:** Clear the statistic information of receiving and sending packets for IP kernel protocol, including the statistic of receiving packets, sending packets and dropping packets and the error information of receiving and sending packets for IP protocol, ICMP protocol, TCP protocol and UDP protocol. **Example:** Clear statistic information of IP protocol. Switch#clear ip traffic #### 1.2.2 clear ipv6 neighbor Command: clear ipv6 neighbors Function: Clear the neighbor cache of IPv6. Parameter: None Command Mode: Admin Mode **Default:** None Usage Guide: This command can not clear static neighbor. **Example:** Clear neighbor list. Switch#clear ipv6 neighbors #### 1.2.3 debug ip icmp Command: debug ip icmp no debug ip icmp **Function:** The debugging for receiving and sending ICMP packets. Parameter: None. Default: None. Command mode: Admin Mode Usage Guide: None. **Example:** Switch#debug ip icmp IP ICMP: sent, type 8, src 0.0.0.0, dst 20.1.1.1 | Display | Description | |---------------|----------------------------| | IP ICMP: sent | Send ICMP packets | | type 8 | Type is 8 (PING request) | | src 0.0.0.0 | Source IPv4 address | | dst 20.1.1.1 | Destination IPv4 address | #### 1.2.4 debug ip packet Command: debug ip packet no debug ip packet Function: Enable the IP packet debug function: the "no debug IP packet" command disables this debug function. Parameter: None **Default:** IP packet debugging information is disabled by default. Command mode: Admin Mode Usage Guide: Displays statistics for IP packets received/sent, including source/destination address and bytes, etc. **Example:** Enable IP packet debug. Switch #debug ip packet IP PACKET: sent, src 200.1.1.35, dst 224.0.0.9, size 312, proto 17, vrf 0 IP PACKET: rcvd, src 101.1.1.1, dst 224.0.0.9, size 312, proto 17, from Vlan200, vrf 0 ## 1.2.5 debug ipv6 packet Command: debug ipv6 packet no debug ipv6 packet Function: IPv6 data packets receive/send debug message. Parameter: None Default: None Command Mode: Admin Mode Usage Guide: Example: Switch#debug ipv6 packet IPv6 PACKET: rcvd, src <fe80::203:fff:fe01:2786>, dst <fe80::1>, size <64>, proto <58>, from Vlan1 | Displayed information | Explanation | |---|---| | IPv6 PACKET: rcvd | Receive IPv6 data report | | Src <fe80::203:fff:fe01:2786></fe80::203:fff:fe01:2786> | Source IPv6 address | | Dst <fe80::1></fe80::1> | Destination IPv6 address | | size <64> | Size of data report | | proto <58> | Protocol field in IPv6 header | | from Vlan1 | IPv6 data report is collected from Layer 3 port vlan1 | ## 1.2.6 debug ipv6 icmp Command: debug ipv6 icmp no debug ipv6 icmp Function: ICMP data packets receive/send debug message. Parameter: None Default: None Command Mode: Admin Mode Usage Guide: None Example: Switch#debug ipv6 icmp IPv6 ICMP: sent, type <129>, src <2003::1>, dst <2003::20a:ebff:fe26:8a49> from Vlan1 | Displayed information | Explanation | |--------------------------------|--------------------------| | IPv6 ICMP: sent | Send IPv6 data report | | type <129> | Ping protocol No. | | Src <2003::1> | Source IPv6 address | | Dst <2003::20a:ebff:fe26:8a49> | Destination IPv6 address | | from Vlan1 | Layer 3 port being sent | ## 1.2.7 debug ipv6 nd Command: debug ipv6 nd [ns | na | rs | ra | redirect] no debug ipv6 nd [ns | na | rs | ra | redirect] **Function:** Enable the debug of
receiving and sending operations for specified types of IPv6 ND messages. The ns, na, rs, ra and redirect parameters represent neighbor solicitation, neighbor advertisement, route solicitation, route advertisement and route redirect. No specification means to enable the debug for all five types of ND message. The no operation of this command will disable debug of receiving and sending operations for specified types of IPv6 ND messages, while no specification means to disable that for all five types of ND message. Parameter: None. Default: The debug of receiving and sending operations for all five types of IPv6 ND messages is disabled by default. **Command Mode:** Admin Mode Usage Guide: The ND protocol is an essential part of IPv6. This command can display the ND message of a specified type for troubleshooting. Example: Switch#debug ipv6 nd IPv6 ND: rcvd, type <136>, src <fe80::203:fff:fe01:2786>, dst <fe80::203:fff:fe01:59ba> | Displayed information | Explanation | |---|--------------------------| | IPv6 ND: rcvd | Receive ND data report | | type <136> | ND Type | | src <fe80::203:fff:fe01:2786></fe80::203:fff:fe01:2786> | Source IPv6 address | | dst <fe80::203:fff:fe01:59ba></fe80::203:fff:fe01:59ba> | Destination IPv6 address | ## 1.2.8 debug ipv6 tunnel packet Command: debug ipv6 tunnel packet no debug ipv6 tunnel packet Function: tunnel data packets receive/send debug message. Parameter: None Default: None Command Mode: Admin Mode Usage Guide: None **Example:** Switch#debug ipv6 tunnel packet IPv6 tunnel: rcvd, type <136>, src <fe80::203:fff:fe01:2786>, dst <fe80::203:fff:fe01:59ba> IPv6 tunnel packet: rcvd src 178.1.1.1 dst 179.2.2.2 size 128 from tunnel1 | Displayed information | Explanation | |---------------------------|---------------------------------| | IPv6 tunnel packet : rcvd | Receive tunnel data report | | type <136> | ND type | | src 178.1.1.1 dst | Tunnel source IPv4 address | | dst 179.2.2.2 | Tunnel destination IPv4 address | #### 1.2.9 description Command: description < desc> no description Function: Configure the tunnel description. The no operation of this command will delete the tunnel description. **Parameters:** < desc> is the tunnel description, its length can not exceed 256 characters. Command Mode: Tunnel Configuration Mode. **Default:** There is no tunnel description by default. Usage Guide: When there is more than one tunnel in the system, configuring description will help user with identifying the purposes of different tunnels. **Examples:** Set the tunnel description as toCernet2. Switch(Config-if-Tunnel1)#description toCernet2 #### 1.2.10 ipv6 proxy enable This command is not supported by switch. ## 1.2.11 ip address Command: ip address <ip-address> <mask> [secondary] no ip address [<ip-address> <mask>] [secondary] Function: Set IP address and net mask of switch; the "no ip address [<ip-address><mask>] [secondary]" command deletes the IP address configuration. **Parameter:** <*ip-address*> is IP address, dotted decimal notation; <*mask*> is subnet mask, dotted decimal notation; [secondary] indicates that the IP address is configured as secondary IP address. Command Mode: VLAN interface configuration mode **Default:** The system default is no IP address configuration. Usage Guide: This command configures IP address on VLAN interface manually. If optional parameter **secondary** is not configured, then it is configured as the primary IP address of VLAN interface; if optional parameter **secondary** is configured, then that means the IP address is the secondary IP address of VLAN. One VLAN interface can only have one primary IP address and more than one secondary IP addresses. Primary IP and Secondary IP all can be used on SNMP/Web/Telnet management. Furthermore, the switch also provides BOOTP/DHCP manner to get IP address. **Example:** The IP address of switch VLAN1 interface is set to 192.168.1.10/24. Switch(Config-if-Vlan1)#ip address 192.168.1.10 255.255.255.0 #### 1.2.12 ipv6 address Command: ipv6 address <ipv6-address/prefix-length> [eui-64] no ipv6 address <ipv6-address/prefix-length> [eui-64] **Function:** Configure aggregately global unicast address, site-local address and link-local address for the interface. **Parameter:** Parameter *<ipv6-address>* is the prefix of IPv6 address, parameter *prefix-length>* is the prefix length of IPv6 address, which is between 3-128, **eui-64**means IPv6 address is generated automatically based on eui64 interface identifier of the interface. **Command Mode:** Interface Configuration Mode. Default: None. **Usage Guide:** IPv6 address prefix can not be multicast address or any other specific IPv6 address, and different layer 3 interfaces can not configure the same address prefix. For global unicast address, the length of the prefix must be greater than or equal to 3. For site-local address and link-local address, the length of the prefix must be greater than or equal to 10. For interface loopback port, the length of the prefix must be equaled to 128. **Example:** Configure an IPv6 address on VLAN1 Layer 3 interface: the prefix is 2001:3f:ed8::99 and the length of the prefix is 64. Switch(Config-if-Vlan1)#ipv6 address 2001:3f:ed8::99/64 #### 1.2.13 ipv6 route Command: ipv6 route <ipv6-prefix | prefix-length> {<ipv6address> | <interface-type interface-number> | {<ipv6address> <interface-type interface-number>} | tunnel <tunnel no> } [[cprecedence>] no ipv6 route <ipv6-prefix | prefix-length> {<ipv6address> | <interface-type interface-number> | {<ipv6address> <interface-type interface-number>} | tunnel <tunnel no> } [<precedence>] **Function:** Set IPv6 static route. Parameters: Parameter <ipv6-prefix> is the destination prefix of IPv6 static route, parameter perfix-length> is the length of IPv6 prefix, parameter <ipv6-address> is the next hop IPv6 address of the reachable network, parameter <interface-type interface-number> is the name of interface from which to reach the destination, <tunnel no> is the output tunnel number of the tunnel route, parameter precedence> is the weight of this route, the range is 1-255, the default is 1 **Default:** There is not any IPv6 static route which is configured by default. Command Mode: Global Mode **Usage Guide:** When the next hop IPv6 address is link-local address, the interface name must be specified. When the next hop IPv6 address is global aggregatable unicast address and site-local address, if no interface name of the exit is specified, it must be assured that the IP address of the next hop and the address of some interface of the switch must be in the same network segment. As for tunnel route, interface name can be directly specified. **Example:** Configure static route 1 with destination address 3ffe:589:dfc::88, prefix length 64 and next hop 2001:8fd:c32::99 (the router has been configured IPv6 address of 2001:8fd:c32::34/64). Switch(config)#ipv6 route 3ffe:589:dfc::88/64 2001:8fd:c32::99 Configure static route 2 with destination 3ffe:ff7:123::55, prefix length 64, next hop fe80::203:ff:89fd:46ac and exit interface name Vlan1. Switch(config)#ipv6 route 3ffe:ff7:123::55/64 fe80::203:ff:89fd:46ac Vlan1 ## 1.2.14 ipv6 redirect Command: ipv6 redirect no ipv6 redirect **Function:** Enable IPv6 router redirect function. The no operation of this command will disable the function. Parameters: None. **Command Mode:** Global Configuration Mode. **Default Settings:** IPv6 router redirect function is disabled by default. **Usage Guide:** If router A, router B, and node C are on the same network link, and router A forwards IPv6 packets from node C to router B, expecting router B to continue the forwarding, then router A will send an IPv6 ICMPv6 redirect message to node C-source of the packet, notifying it that the best next hop of this destination address is router B. By doing so, the forwarding overhead of router A will be decreased, so is the network transmission delay of node C. **Examples:** Enable IPv6 router redirect function. Switch(config)# ipv6 redirect ## 1.2.15 ipv6 nd dad attempts Command: ipv6 nd dad attempts <value> no ipv6 nd dad attempts **Function:** Set Neighbor Solicitation Message number sent in succession by interface when setting Duplicate Address Detection. **Parameter:** < value> is the Neighbor Solicitation Message number sent in succession by Duplicate Address Detection, and the value of < value> must be in 0-10, NO command restores to default value 1. Command Mode: Interface Configuration Mode **Default:** The default request message number is 1. **Usage Guide:** When configuring an IPv6 address, it is required to process IPv6 Duplicate Address Detection, this command is used to configure the ND message number of Duplicate Address Detection to be sent, *value* being 0 means no Duplicate Address Detection is executed. **Example:** The Neighbor Solicitation Message number sent in succession by interface when setting Duplicate Address Detection is 3. Switch(Config-if-Vlan1)# ipv6 nd dad attempts 3 #### 1.2.16 ipv6 nd ns-interval Command: ipv6 nd ns-interval <seconds> no ipv6 nd ns-interval Function: Set the time interval of Neighbor Solicitation Message sent by the interface. **Parameter:** parameter **<seconds>** is the time interval of sending Neighbor Solicitation Message, **<seconds>** value must be between 1-3600 seconds, **no** command restores the default value 1 second. **Command Mode:** Interface Configuration Mode **Default:** The default Request Message time interval is 1 second. **Usage Guide:** The value to be set will include the situation in all routing announcement on the interface. Generally, very short time interval is not recommended. Example: Set Vlan1 interface to send out Neighbor Solicitation Message time interval to be 8 seconds. Switch(Config-if-Vlan1)#ipv6 nd ns-interval 8 #### 1.2.17 ipv6 nd suppress-ra Command: ipv6 nd suppress-ra no ipv6 nd suppress-ra Function: Prohibit router announcement.
Parameter: None **Command Mode:** Interface Configuration Mode **Default:** Router Announcement function is disabled. Usage Guide: no ipv6 nd suppress-ra command enable router announcement function. **Example:** Enable router announcement function. Switch(Config-if-Vlan1)#no ipv6 nd suppress-ra #### 1.2.18 ipv6 nd ra-lifetime Command: ipv6 nd ra-lifetime < seconds> no ipv6 nd ra-lifetime **Function:** Configure the lifetime of router announcement. Parameter: parameter <seconds> stands for the number of seconds of router announcement lifetime, < seconds > value must be between 0-9000. **Command Mode:** Interface Configuration Mode **Default:** The number of seconds of router default announcement lifetime is 1800. **Usage Guide:** This command is used to configure the lifetime of the router on Layer 3 interface, seconds being 0 means this interface can not be used for default router, otherwise the value should not be smaller than the maximum time interval of sending router announcement. If no configuration is made, this value is equal to 3 times of the maximum time interval of sending routing announcement. **Example:** Set the lifetime of routing announcement is 100 seconds. Switch(Config-if-Vlan1)#ipv6 nd ra-lifetime 100 ## 1.2.19 ipv6 nd min-ra-interval Command: ipv6 nd min-ra-interval < seconds> no ipv6 nd min-ra-interval Function: Set the minimum time interval of sending routing message. **Parameter:** Parameter **<** seconds**>** is number of seconds of the minimum time interval of sending routing announcement, **<** seconds**>** must be between 3-1350 seconds. **Command Mode:** Interface Configuration Mode **Default:** The default minimum time interval of sending routing announcement is 200 seconds **Usage Guide:** The minimum time interval of routing announcement should not exceed 3/4 of the maximum time interval. **Example:** Set the minimum time interval of sending routing announcement is 10 seconds. Switch(Config-if-Vlan1)#ipv6 nd min-ra-interval 10 #### 1.2.20 ipv6 nd max-ra-interval Command: ipv6 nd max-ra-interval < seconds> no ipv6 nd max-ra-interval Function: Set the maximum time interval of sending routing message. Parameter: Parameter <seconds> is number of seconds of the time interval of sending routing announcement, **<seconds>** must be between 4-1800 seconds. **Command Mode:** Interface Configuration Mode **Default:** The default maximum time interval of sending routing announcement is 600 seconds. **Usage Guide:** The maximum time interval of routing announcement should be smaller than the lifetime value routing announcement. **Example:** Set the maximum time interval of sending routing announcement is 20 seconds. Switch(Config-if-Vlan1)#ipv6 nd max-ra-interval 20 #### 1.2.21 ipv6 nd prefix Command: ipv6 nd prefix < ipv6-prefix / prefix-length>{ [<valid-lifetime> < preferred-lifetime>] [no-autoconfig / off-link[no-autoconfig]]} no ipv6 nd prefix <ipv6-prefix | prefix-length> **Function:** Configure the address prefix and relative parameters for router announcement. **Parameter:** Parameter <*ipv6-prefix*> is the address prefix of the specified announcement, parameter < prefix-length > is the length of the address prefix of the specified announcement, parameter < valid-lifetime > is the valid lifetime of the prefix, parameter < preferred-lifetime > is the preferred lifetime of the prefix, and the valid lifetime must be no smaller than preferred lifetime. Parameter no-autoconfig says this prefix can not be used to automatically configure IPv6 address on the host in link-local. Parameter **off-link** says the prefix specified by router announcement message is not assigned to link-local, the node which sends data to the address including this prefix consider link-local as unreachable. Command Mode: Interface Configuration Mode **Default:** The default value of *valid-lifetime* is 2592000 seconds (30 days), the default value of *preferred-lifetime* is 604800 seconds (7 days). **off-link** is off by default, **no-autoconfig** is off by default. **Usage Guide:** This command allows controlling the router announcement parameters of every IPv6 prefix. Note that valid lifetime and preferred lifetime must be configured simultaneously. **Example:** Configure IPv6 announcement prefix as 2001:410:0:1::/64 on Vlan1, the valid lifetime of this prefix is 8640 seconds, and its preferred lifetime is 4320 seconds. Switch(Config-if-Vlan1)#ipv6 nd prefix 2001:410:0:1::/64 8640 4320 #### 1.2.22 ipv6 nd ra-hoplimit Command: ipv6 nd ra-hoplimit <value> **Function:** Set the hoplimit of sending router advertisement. Parameters: <value> is the hoplimit of sending router advertisement, ranging from 0 to 255. **Command Mode:** Interface Configuration Mode. **Default:** The default hoplimit of sending router advertisement is 64. **Example:** Set the hoplimit of sending router advertisement in interface vlan 1 as 128. Switch#(Config-if-Vlan1)#ipv6 nd ra-hoplimit 128 #### 1.2.23 ipv6 nd ra-mtu Command: ipv6 nd ra-mtu <value> Function: Set the mtu of sending router advertisement. Parameters: <value> is the mtu of sending router advertisement, ranging from 0 to 1500. **Command Mode:** Interface Configuration Mode. **Default:** The default mtu of sending router advertisement is 1500. **Example:** Set the mtu of sending router advertisement in interface vlan 1 as 500. Switch#(Config-if-Vlan1)#ipv6 nd ra-mtu 500 #### 1.2.24 ipv6 nd reachable-time Command: ipv6 nd reachable-time <seconds> Function: Set the reachable-time of sending router advertisement. Parameters: <value> is the reachable-time of sending router advertisement, ranging from 0 to 3600000 milliseconds. Command Mode: Interface Configuration Mode. Default Settings: The default reachable-time of sending router advertisement is 30000 milliseconds. **Example:** Set the reachable-time of sending router advertisement in interface vlan 1 as 100000 milliseconds. Switch(Config-if-Vlan1)#ipv6 nd reachable-time 100000 ## 1.2.25 ipv6 nd retrans-timer Command: ipv6 nd retrans-timer <seconds> Function: Set the retrans-timer of sending router advertisement. Parameters: <value> is the retrans-timer of sending router advertisement, ranging from 0 to 4294967295 milliseconds. Command Mode: Interface Configuration Mode. **Default:** The default retrans-timer of sending router advertisement is 1000 milliseconds. **Example:** Set the reachable-time of sending router advertisement in interface vlan 1 as 10000 milliseconds. Switch(Config-if-Vlan1)#ipv6 nd retrans-timer 10000 #### 1.2.26 ipv6 nd other-config-flag Command: ipv6 nd other-config-flag Function: Set the flag representing whether information other than the address information will be obtained via DHCPv6. Parameters: None. **Command Mode:** Interface Configuration Mode. Default: Information other than the address information won't be obtained via DHCPv6. Examples: Set IPv6 information other than the address information in interface vlan 1 will be obtained via DHCPv6. Switch(Config-if-Vlan1)#ipv6 nd other-config-flag ## 1.2.27 ipv6 nd managed-config-flag Command: ipv6 nd managed-config-flag Function: Set the flag representing whether the address information will be obtained via DHCPv6. Parameters: None. **Command Mode:** Interface Configuration Mode. **Default:** The address information won't be obtained via DHCPv6. **Examples:** Set IPv6 address information in interface vlan 1 will be obtained via DHCPv6. Switch(Config-if-Vlan1)#ipv6 nd managed-config-flag #### 1.2.28 ipv6 neighbor Command: ipv6 neighbor <ipv6-address> <hardware-address> interface <interface-type interface-name> no ipv6 neighbor <ipv6-address> Function: Set static neighbor table entry. **Parameters:** Parameter *ipv6-address* is static neighbor IPv6 address, same to interface prefix parameter, parameter *hardware-address* is static neighbor hardware address, *interface-type* is Ethernet type, *interface-name* is Layer 2 interface name. Command Mode: Interface Configuration Mode **Default Situation:** There is not static neighbor table entry. Usage Guide: IPv6 address and multicast address for specific purpose and local address can not be set as neighbor. **Example:** Set static neighbor 2001:1:2::4 on port E1/1, and the hardware MAC address is 00-03-0f-89-44-bc. Switch(Config-if-Vlan1)#ipv6 neighbor 2001:1:2::4 00-03-0f-89-44-bc interface Ethernet 1/1 #### 1.2.29 interface tunnel Command: interface tunnel <tnl-id> no interface tunnel <tnl-id> Function: Create/Delete tunnel. Parameter: Parameter <tnl-id> is tunnel No. Command Mode: Global Mode. Default: None. **Usage Guide:** This command creates a virtual tunnel interface. Since there is not information such as specific tunnel mode and tunnel source, **show ipv6 tunnel** does not show the tunnel, enter tunnel mode after creating, under that model information such as tunnel source and destination can be specified. No command deletes a tunnel. Example: Create tunnel 1. Switch(Config)#interface tunnel 1 #### 1.2.30 show ip interface Command: show ip interface [<ifname> | vlan <vlan-id>] brief **Function:** Show the brief information of the configured layer 3 interface. Parameters: <ifname> Interface name; <vlan-id> VLAN ID. Default: Show all brief information of the configured layer 3 interface when no parameter is specified. Command mode: All modes. Usage Guide: None. **Example:** Restarter#show ip interface vlan1 brief Index Interface IP-Address Protocol 3001 Vlan1 192.168.2.11 up #### 1.2.31 show ip traffic Command: show ip traffic Function: Display statistics for IP packets. Command mode: Admin Mode Usage Guide: Display statistics for IP, ICMP, TCP, UDP packets received/sent. **Example:** Switch#show ip traffic IP statistics: Rcvd: 3249810 total, 3180 local destination 0 header errors, 0 address errors 0 unknown protocol, 0 discards Frags: 0 reassembled, 0 timeouts 0 fragment rcvd, 0 fragment dropped 0 fragmented, 0 couldn't fragment, 0 fragment sent ## Commands for Layer 3 Forward and ARP,ND Sent: 0
generated, 3230439 forwarded 0 dropped, 0 no route ICMP statistics: Rcvd: 0 total 0 errors 0 time exceeded 0 redirects, 0 unreachable, 0 echo, 0 echo replies 0 mask requests, 0 mask replies, 0 quench 0 parameter, 0 timestamp, 0 timestamp replies Sent: 0 total 0 errors 0 time exceeded 0 redirects, 0 unreachable, 0 echo, 0 echo replies 0 mask requests, 0 mask replies, 0 quench 0 parameter, 0 timestamp, 0 timestamp replies #### TCP statistics: | TcpActiveOpens | 0, TcpAttemptFails 0 | | |----------------|----------------------|------| | TcpCurrEstab | 0, TcpEstabResets | 0 | | TcpInErrs | 0, TcpInSegs | 3180 | | TcpMaxConn | 0, TcpOutRsts | 3 | | TcpOutSegs | 0, TcpPassiveOpens | 8 | | TcpRetransSegs | 0, TcpRtoAlgorithm | 0 | | TcpRtoMax | 0, TcpRtoMin | 0 | | UDP statics: | | | | UdpInDatagrams | 0, UdpInErrors | 0 | | UdpNoPorts | 0, UdpOutDatagrams | 0 | | Display | red information | Explanation | |-----------|--|--| | IP statis | stics: | IP packet statistics. | | Rcvd: | 3249810 total, 3180 local destination 0 header errors, 0 address errors 0 unknown protocol, 0 discards | Statistics of total packets received, number of packets reached local destination, number of packets have header errors, number of erroneous addresses, number of packets of unknown protocols; number of packets dropped. | | Frage | 0 reassembled, 0 timeouts 0 fragment rcvd, 0 fragment dropped 0 fragmented, 0 couldn't fragment, 0 fragment sent | Fragmentation statistics: number of packets reassembled, timeouts, fragments received, fragments discarded, packets that cannot be fragmented, number of fragments | | | | sent, etc. | |------------------|---------------------------------------|---------------------------------------| | Sent: | 0 generated, 0 forwarded | Statistics for total packets sent, | | | | including number of local packets, | | | 0 dropped, 0 no route | forwarded packets, dropped | | | | packets and packets without route. | | ICMP statistics: | | ICMP packet statistics. | | Rcvd: | 0 total 0 errors 0 time exceeded | Statistics of total ICMP packets | | | 0 | received and classified information | | | 0 redirects, 0 unreachable, 0 echo, 0 | | | | echo replies | | | | 0 mask requests, 0 mask replies, 0 | | | | quench | | | | 0 parameter, 0 timestamp, 0 timestamp | | | _ | replies | Statistics of total ICMP packets sent | | Sent: | 0 total 0 errors 0 time exceeded | and classified information | | | 0 redirects, 0 unreachable, 0 echo, 0 | and classified information | | | echo replies | | | | 0 mask requests, 0 mask replies, 0 | | | | quench | | | | 0 parameter, 0 timestamp, 0 timestamp | | | | replies | | | TCP statistics: | | TCP packet statistics. | | UDP statistics: | | UDP packet statistics. | ## 1.2.32 show ipv6 interface Command: show ipv6 interface {brief|<interface-name>} **Function:** Show interface IPv6 parameters. Parameter: Parameter brief is the brief summarization of IPv6 status and configuration, and parameter interface-name is Layer 3 interface name. **Default:** None Command Mode: Admin and Configuration Mode Usage Guide: If only brief is specified, then information of all L3 is displayed, and you can also specify a specific Layer 3 interface. #### **Example:** Switch#show ipv6 interface Vlan1 Vlan1 is up, line protocol is up, dev index is 2004 Device flag 0x1203(UP BROADCAST ALLMULTI MULTICAST) IPv6 is enabled Link-local address(es): fe80::203:fff:fe00:10 PERMANENT Global unicast address(es): 3001::1 subnet is 3001::1/64 PERMANENT Joined group address(es): ff02::1 ff02::16 ff02::2 ff02::5 ff02::6 ff02::9 ff02::d ff02::1:ff00:10 ff02::1:ff00:1 MTU is 1500 bytes ND DAD is enabled, number of DAD attempts is 1 ND managed_config_flag is unset ND other_config_flag is unset ND NS interval is 1 second(s) ND router advertisements is disabled ND RA min-interval is 200 second(s) ND RA max-interval is 600 second(s) ND RA hoplimit is 64 ND RA lifetime is 1800 second(s) ND RAMTU is 0 ND advertised reachable time is 0 millisecond(s) ND advertised retransmit time is 0 millisecond(s) | Displayed information | Explanation | |-----------------------|--------------------------| | Vlan1 | Layer 3 interface name | | [up/up] | Layer 3 interface status | | dev index | Internal index No. | |-----------------------|--| | fe80::203:fff:fe00:10 | Automatically configured IPv6 address of Layer | | | 3 interface | | 3001::1 | Configured IPv6 address of Layer 3 interface | ### 1.2.33 show ipv6 route Command: show ipv6 route [<destination>|<destination>|<length>| database| fib [local]| nsm [connected | static | rip| ospf | bgp | isis| kernel| database]|statistics] Function: Display IPv6 routing table. Parameter: <destination> is destination network address; <destination>|<length> is destination network address plus prefix length; connected is directly connected router; static is static router; rip is RIP router; ospf is OSPF router; bgp is BGP router; isis is ISIS router; kernel is kernel router; statistics shows router number; database is router database. **Default Situation:** None. **Command Mode:** Admin and Configuration Mode. **Usage Guide:** show ipv6 route only shows IPv6 kernal routing table (routing table in tcpip), database shows all routers except the local router, fib local shows the local router, statistics shows router statistics information. #### Example: Switch#show ipv6 route Codes: C - connected, L - Local, S - static, R - RIP, O - OSPF, I - IS-IS, B - BGP - C ::/0 via ::, tunnel3 256 - S 2001:2::/32 via fe80::789, Vlan2 1024 - S 2001:2:3:4::/64 via fe80::123, Vlan2 1024 - O 2002:ca60:c801:1::/64 via ::, Vlan1 1024 - C 2002:ca60:c802:1::/64 via ::, tunnel49 256 - C 2003:1::/64 via ::, Vlan4 256 - C 2003:1::5efe:0:0/96 via ::, tunnel26 256 - S 2004:1:2:3::/64 via fe80:1::88, Vlan2 1024 - O 2006:1::/64 via ::. Vlan1 1024 - S 2008:1:2:3::/64 via fe80::250:baff:fef2:a4f4, Vlan1 1024 - C 2008:2005:5:8::/64 via ::, Ethernet0 256 - S 2009:1::/64 via fe80::250:baff:fef2:a4f4, Vlan1 1024 С 2022:1::/64 via ::, Ethernet0 256 0 via fe80::20c:ceff:fe13:eac1, 3333:1:2:3::/64 Vlan12 1024 С via ::. 3ffe:501:ffff:1::/64 Vlan4 256 0 3ffe:501:ffff:100::/64 via ::, Vlan5 1024 0 3ffe:3240:800d:1::/64 via ::, Vlan1 1024 0 3ffe:3240:800d:2::/64 via ::, Vlan2 1024 0 3ffe:3240:800d:10::/64 via ::, Vlan12 1024 0 3ffe:3240:800d:20::/64 via fe80::20c:ceff:fe13:eac1, Vlan12 1024 С fe80::/64 via ::, Vlan1 256 С fe80::5efe:0:0/96 via ::, tunnel26 256 С ff00::/8 256 via ::, Vlan1 | Displayed information | Explanation | | |----------------------------------|--|--| | IPv6 Routing Table | IPv6 routing table status | | | Codes: K - kernel route, C - | | | | connected, S - static, R - RIP, | | | | O - OSPF,I - IS-IS, B - BGP > - | Abbreviation display sign of every entry | | | selected route, * - FIB route, p | | | | - stale info | | | | | The static router in FIB table, of which the | | | S 2009:1::/64 via | destination network segment is 2002::/64, via | | | fe80::250:baff:fef2:a4f4, | means passing fe80::250:baff:fef2:a4f4 is the next | | | Vlan1 1024 | hop, VLAN1 is the exit interface name, 1024 is | | | | router weight. | | ## 1.2.34 show ipv6 neighbors Command: show ipv6 neighbors [{vlan|ethernet|tunnel } interface-number | interface-name | address < ipv6address>] **Function:** Display neighbor table entry information. **Parameter:** Parameter **{vlan|ethernet|tunnel} interface-number|interface-name** specify the lookup based on interface. Parameter **ipv6-address** specifies the lookup based on IPv6 address. It displays the whole neighbor table entry if without parameter. **Default Situation: None** Command Mode: Admin and Configuration Mode **Usage Guide:** #### Example: Switch#show ipv6 neighbors IPv6 neighbour unicast items: 14, valid: 11, matched: 11, incomplete: 0, delayed: 0, manage items 5 | IPv6 Address | | Hardware Addr | Interface | Port | |--------------------------|-----------------------|---------------|---------------|--------| | State | | | | | | 2002:ca60:c801 | :1:250:baff:fef2:a4f4 | 00-50-ba-f2 | -a4-f4 | Vlan1 | | Ethernet1/2 | reachable | | | | | 3ffe:3240:800d: | 1::100 | 00-03 | 3-0f-01-27-86 | Vlan1 | | Ethernet1/3 | reachable | | | | | 3ffe:3240:800d: | 1::8888 | 00-02 | -01-00-00-00 | Vlan1 | | Ethernet1/1 | permanent | | | | | 3ffe:3240:800d: | 1:250:baff:fef2:a4f4 | 00-50-ba-f2- | a4-f4 | Vlan1 | | Ethernet1/4 | reachable | | | | | 3ffe:3240:800d: | 2::8888 | 00-02 | -01-00-01-01 | Vlan2 | | Ethernet1/16 | permanent | | | | | 3ffe:3240:800d: | 2:203:fff:fefe:3045 | 00-03-0f-fe | -30-45 | Vlan2 | | Ethernet1/15 | reachable | | | | | fe80::203:fff:fe0 | 1:2786 | 00-03- | -0f-01-27-86 | Vlan1 | | Ethernet1/5 | reachable | | | | | fe80::203:fff:fefe | :3045 | 00-03 | -0f-fe-30-45 | Vlan2 | | Ethernet1/17 | reachable | | | | | fe80::20c:ceff:fe | 13:eac1 | 00-0c-c | e-13-ea-c1 | Vlan12 | | Ethernet1/20 | reachable | | | | | fe80::250:baff:fef2:a4f4 | | 00-50 | -ba-f2-a4-f4 | Vlan1 | | Ethernet1/6 | reachable | | | | IPv6 neighbour table: 11 entries | Displayed information | Explanation | |-----------------------|--| | IPv6 Addres | Neighbor IPv6 address | | Hardware Addr | Neighbor MAC address | | Interface | Exit interface name | | Port | Exit interface name | | State | Neighbor status (reachable、statle、delay、 | | | probe、permanent、incomplete、unknow) | ## 1.2.35 show ipv6 traffic Command: show ipv6 traffic **Function:** Display IPv6 transmission data packets statistics information. Parameter: None Default: None Command Mode: Admin and Configuration Mode Example:
Switch#show ipv6 traffic IP statistics: Rcvd: 90 total, 17 local destination 0 header errors, 0 address errors0 unknown protocol, 13 discards Frags: 0 reassembled, 0 timeouts 0 fragment rcvd, 0 fragment dropped 0 fragmented, 0 couldn't fragment, 0 fragment sent Sent: 110 generated, 0 forwarded 0 dropped, 0 no route ICMP statistics: Rcvd: 0 total 0 errors 0 time exceeded 0 redirects, 0 unreachable, 0 echo, 0 echo replies | Displayed information | Explanation | |-----------------------------------|----------------------------------| | IP statistics | IPv6 data report statistics | | Rcvd: 90 total, 17 local | IPv6 received packets statistics | | destination0 header errors, 0 | | | address errors0 unknown protocol, | | | 13 discards | | | Frags: 0 reassembled, 0 timeouts | IPv6 fragmenting statistics | | 0 fragment rcvd, 0 fragment | | | dropped0 fragmented, 0 couldn't | | | fragment, 0 fragment sent | | | Sent: 110 generated, 0 forwarded | IPv6 sent packets statistics | | 0 dropped, 0 no route | | ## 1.2.36 show ipv6 redirect Command: show ipv6 redirect Function: Display the state IPv6 redirect switch. Parameters: None. Default: None. **Command Mode:** Admin and Configuration Mode. Usage Guide: This command can be used to check whether the IPv6 redirect function in the system is enabled. **Examples:** Switch show ipv6 redirect ipv6 redirect is disabled #### 1.2.37 show ipv6 tunnel Command: show ipv6 tunnel [<tnl-id>] Function: Display tunnel information. Parameter: Parameter <tnl-id> is tunnel No. Default Situation: None. Command Mode: Admin Mode. Usage Guide: If there is not tunnel number, then information of all tunnels are shown. If there is tunnel number, then the detailed information of specified tunnel is shown. Example: Switch#show ipv6 tunnel name mode source destination nexthop tunnel3 6to4 178.1.1.1 | Displayed information | Explanation | |-----------------------|---| | Name | Tunnel name | | Mode | Tunnel type | | Source | Tunnel source ipv4 address | | Destination | Tunnel destination ipv4 address | | Nexthop | Tunnel next hop (only applies to ISATAP tunnel) | #### 1.2.38 tunnel source Command: tunnel source {<ipaddress> | <ipv6address> | <interface-name>} no tunnel source Function: Configure the IPv4/IPv6 address of the tunnel source. **Parameter:** <*ipaddress*> is the IPv4 address of tunnel source, must be the unicast address; <*ipv6address*> is the IPv6 address of tunnel source; <*interface-name*> means the tunnel source address is the IPv4 address of the interface <*interface-name*>. Command Mode: Tunnel Configuration Mode. **Default Situation:** There is no IPv4/IPv6 address and interface name of tunnel source. Usage Guide: Set the source IPv4/IPv6 address or specify an interface name of the tunnel source address to configure the tunnel. **Example:** Configure tunnel source IPv4 address 202.89.176.6. Switch(Config-if-Tunnel1)#tunnel source 202.89.176.6 #### 1.2.39 tunnel destination Command: tunnel destination <ipaddress | ipv6address> no tunnel destination Function: Configure the IPv4/IPv6 address of the tunnel destination. Parameter: <ipaddress> is the IPv4 address of tunnel destination, <ipv6address> is the IPv6 address of tunnel destination. Command Mode: Tunnel Configuration Mode. **Default Situation:** There is no IPv4/IPv6 address of tunnel destination. Usage Guide: This command is used to configure the IPv4/IPv6 address of tunnel destination. **Example:** Configure tunnel destination 203.78.120.5. Switch(Config-if-Tunnel1)#tunnel destination 203.78.120.5 ## 1.2.40 tunnel nexthop Command: tunnel nexthop <ipaddress> no tunnel nexthop **Function:** Configure tunnel nexthop. **Parameter: <ipaddress>** is the IPv4 address of tunnel nexthop. Command Mode: Tunnel Configuration Mode. **Default Situation:** There is no IPv4 address of tunnel nexthop. **Usage Guide:** This command is for ISATAP tunnel, other tunnels won't check the configuration of nexthop. Notice: IPv4 address of ISATAP tunnel nexthop and IPv4 address of tunnel source should be in same segment. **Example:** Configure tunnel next hop 178.99.156.8. Switch(Config-if-Tunnel1)#tunnel source 178.99.156.7 Switch(Config-if-Tunnel1)#tunnel nexthop 178.99.156.8 Switch(Config-if-Tunnel1)#tunnel mode ipv6ip isatap #### 1.2.41 tunnel 6to4-relay This command is not supported by the switch. #### 1.2.42 tunnel mode Command: tunnel mode [[gre] | ipv6ip [6to4 | isatap]] no tunnel mode **Function:** Configure Tunnel Mode. **Parameter: gre** is GRE tunnel. Command Mode: Tunnel Configuration Mode. Default: None. **Usage Guide:** In configuring tunnel mode, only specifying ipv6ip indicates configuring tunnel. Ipv6ip 6to4 indicates it is 6to4 tunnel, ipv6ip isatap indicates it is ISATAP tunnel. **Example:** Configure tunnel mode. - 1、Switch(Config-if-Tunnel1)#tunnel mode ipv6ip - 2、Switch(Config-if-Tunnel1)#tunnel mode ipv6ip 6to4 - 3, Switch(Config-if-Tunnel1)#tunnel mode ipv6ip isatap ## 1.3 Commands for Network Management Port Configuration #### **1.3.1 duplex** This command is not supported by switch. #### 1.3.2 interface ethernet Command: interface ethernet <interface-name> **Function:** Enters network management port configuration mode from Global Mode. **Parameters:** <*interface-name*> stands for port number, the default value is 0 or 1. Command mode: Global Mode. **Usage Guide:** Run the **exit** command to exit the Network Management Port Mode to Global Mode. The interface ethernet 1 is the network management port on CP, the interface ethernet 0 is the network management port on SAIC. **Example:** Entering Network Management Port Mode. Switch(config)#interface ethernet 0 Switch(Config-If-Ethernet0)# ### 1.3.3 ip address Command: ip address < ip-address > < mask> no ip address [<ip-address> <mask>] **Function:** Sets the IP address and mask for the switch; the no command deletes the specified IP address setting. **Parameters:** <*ip-address*> is the IP address in decimal format; <*mask*> is the subnet mask in decimal format. **Command mode:** Network Management Port Configuration Mode. **Default:** No IP address is configured by default. **Usage Guide:** This command configures the IP address for Network Management Port. **Example:** Setting the IP address of the Network management Port to 192.168.1.10/24. Switch(Config-If-Ethernet0)#ip address 192.168.1.10 255.255.255.0 #### 1.3.4 shutdown Command: shutdown no shutdown Function: Shuts down the Network Management Port; the "no shutdown" command opens the port. Command mode: Network Management Port Configuration Mode. **Default:** Network Management Port is opened by default. **Usage Guide:** When Network Management Port is shut down, no data frames are sent in the port, and the port status displayed when the user typed "**show interface**" command is "down". **Example:** Enable the Network Management Port. Switch(config)#interface ethernet 0 Switch(Config-If-Ethernet0)#no shutdown #### **1.3.5** speed This command is not supported by switch. #### 1.4 Commands for IP Route Aggregation #### 1.4.1 ip fib optimize Command: ip fib optimize no ip fib optimize Function: Enables the switch to use optimized IP route aggregation algorithm; the "no ip fib optimize" disables the optimized IP route aggregation algorithm. **Default:** Optimized IP route aggregation algorithm is disabled by default. Command mode: Global Mode. **Usage Guide:** This command is used to optimize the aggregation algorithm: if the route table contains no default route, the next hop most frequently referred to will be used to construct a virtual default route to simplify the aggregation result. This method has the benefit of more effectively simplifying the aggregation result. However, while adding a virtual default route to the chip segment route table reduces CPU load, it may introduce unnecessary data stream to switches of the next hop. In fact, part of local switch CPU load is transferred to switches of the next hop. **Example:** Disabling optimized IP route aggregation algorithm. Switch(config)# no ip fib optimize #### 1.5 Commands for URPF #### 1.5.1 debug urpf Command: debug urpf {notice | warn | error} no debug urpf {notice | warn | error} Function: Enable the URPF debug function to display error information if failures occur during the installation of URPF rules. Command Mode: Admin Mode Parameters: None Usage Guide: None Example: Switch#debug urpf error #### 1.5.2 ip urpf enable Command: ip urpf enable {loose | strict} {allow-default-route} no ip urpf enable Function: Enable the URPF function on the port. Parameters: loose: the loose mode; strict: the strict mode; allow-default-route: allow the default route. Command mode: Port Mode **Default:** The URPF function is disabled on the port by default. **Usage Guide:** Users should specify the mode: loose or strict. **Example:** Switch(config)#interface ethernet 1/4 Switch(Config-If-Ethernet1/4)#ip urpf enable strict Switch(Config-If-Ethernet1/4)#interface ethernet 1/5 Switch(Config-If-Ethernet1/5)#ip urpf enable loose Switch(Config-If-Ethernet1/5) #interface ethernet 1/6 Switch(Config-If-Ethernet1/6)#ip urpf enable loose allow-default-route Switch(Config-If-Ethernet1/6)#interface ethernet 1/7 Switch(Config-If-Ethernet1/7)#ip urpf enable strict allow-default-route ### 1.5.3 show urpf rule ipv4 num Command: show urpf rule ipv4 num interface {ethernet IFNAME | IFNAME} Function: Display the number of IPv4 rules bonded to the port. **Parameters:** IFNAME: specify the port name. **Command Mode:** Admin and Configuration Mode Command Mode. Admin and Comiguration ivi Usage Guide: None **Examples:** Display the number of IPv4 rules bonded to the port Ethernet1/4. Switch#show urpf rule ipv4 num interface ethernet 1/4 #### 1.5.4 show urpf rule ipv6 num Command: show urpf rule ipv6 num interface {ethernet IFNAME | IFNAME} **Function:** Display the number of IPv6 rules bonded to the port. Parameters: IFNAME: specify the port name. Command
Mode: Admin and Configuration Mode Usage Guide: None **Example:** Display the number of IPv6 rules bonded to the port Ethernet1/4. Switch#show urpf rule ipv6 num interface ethernet 1/4 ## 1.5.5 show urpf rule ipv4 Command: show urpf rule ipv4 interface {ethernet IFNAME | IFNAME} **Function:** Display the details of IPv4 rules bonded to the port. Parameters: IFNAME: specify the port name. **Command Mode:** Admin and Configuration Mode **Usage Guide:** Display the currently distributed rules. **Examples:** Display the details of IPv4 rules bonded to the port Ethernet1/4. Switch#show urpf rule ipv4 interface ethernet 1/4 #### 1.5.6 show urpf rule ipv6 Command: show urpf rule ipv6 interface {ethernet IFNAME | IFNAME} **Function:** Display the details of IPv6 rules bonded to the port. Parameters: IFNAME: specify the port name. **Command Mode:** Admin and Configuration Mode **Usage Guide:** Display the currently distributed rules. **Examples:** Display the details of IPv6 rules bonded to the port ethernet1/4. Switch#show urpf rule ipv6 interface ethernet 1/4 #### 1.5.7 show urpf Command: show urpf Function: Display which interfaces have been enabled with URPF function. Command Mode: Admin and Configuration Mode Parameters: None Usage Guide: None **Example:** Switch#show urpf ## 1.5.8 urpf enable Command: urpf enable no urpf enable Function: Enable the global URPF function. Parameters: None Command mode: Global Mode Default: The URPF protocol module is disabled by default. Usage Guide: None Example: Switch(config)#urpf enable ## 1.6 Commands for ARP Configuration ## 1.6.1 arp Command: arp <ip_address> <mac_address> {interface [ethernet] <portName>} no arp <ip_address> Function: Configures a static ARP entry; the "no arp <ip_address>" command deletes a ARP entry of the specified IP address. Parameters: <ip_address> is the IP address, at the same field with interface address; <mac_address> is the MAC address; ethernet stands for Ethernet port; <portName> for the name of layer2 port. **Default:** No static ARP entry is set by default. **Command mode:** VLAN Interface Mode **Usage Guide:** Static ARP entries can be configured in the switch. **Example:** Configuring static ARP for interface VLAN1. Switch(Config-if-Vlan1)#arp 1.1.1.1 00-03-0f-f0-12-34 interface eth 1/2 #### 1.6.2 clear arp-cache Command: clear arp-cache Function: Clears ARP table. Command mode: Admin Mode Example: Switch#clear arp-cache #### 1.6.3 clear arp traffic Command: clear arp traffic **Function:** Clear the statistic information of ARP messages of the switch. For box switches, this command will only clear statistics of APP messages received and sent from the current boardcard. Command mode: Admin Mode **Example:** Switch#clear arp traffic #### 1.6.4 debug arp Command: debug arp {receive|send|state} no debug arp {receive|send|state} **Function:** Enables the ARP debugging function; the "**no debug arp** {receive|send|state}" command disables this debugging function. **Parameter: receive** the debugging-switch of receiving ARP packets of the switch; **send** the debugging-switch of sending ARP packets of the switch; **state** the debugging-switch of APR state changing of the switch. **Default:** ARP debug is disabled by default. Command mode: Admin Mode. Usage Guide: Display contents for ARP packets received/sent, including type, source and destination address, etc. **Example:** Enable ARP debugging. Switch#debug arp receive %Jan 01 01:05:53 2006 IP ARP: rcvd, type REQUEST, src 172.16.1.251, 00-e0-4c-88-ad-bc, dst 172.16.1.110, 00-00-00-00-00 flag 0x0, pkt type 1, intf Vlan100. %Jan 01 01:05:53 2006 IP ARP: rcvd, type REQUEST, src 172.16.1.251, 00-e0-4c-88-ad-bc, dst 172.16.1.110, 00-00-00-00-00 flag 0x0, pkt type 1, intf Vlan100. e%Jan 01 01:05:53 2006 IP ARP: rcvd, type REQUEST, src 172.16.1.251, 00-e0-4c-88-ad-bc, dst 172.16.1.110, 00-00-00-00-00 flag 0x0, pkt type 1, intf Vlan100. %Jan 01 01:05:53 2006 IP ARP: rcvd, type REQUEST, src 172.16.1.251, 00-e0-4c-88-ad-bc, dst 172.16.1.110, 00-00-00-00-00 flag 0x0, pkt type 1, intf Vlan100. %Jan 01 01:05:53 2006 IP ARP: rcvd, type REQUEST, src 172.16.1.251, 00-e0-4c-88-ad-bc, dst 172.16.1.110, 00-00-00-00-00 flag 0x0, pkt type 1, intf Vlan100. #### 1.6.5 ip proxy-arp Command: ip proxy-arp no ip proxy-arp Function: Enables proxy ARP for VLAN interface; the no command disables proxy ARP. **Default:** Proxy ARP is disabled by default. **Command mode:** VLAN Interface Mode **Usage Guide:** When an ARP request is received on the layer 3 interface, requesting an IP address in the same IP segment of the interface but not the same physical network, and the proxy ARP interface has been enabled, the interface will reply to the ARP with its own MAC address and forward the actual packets received. Enabling this function allows machines to physically be separated but in the same IP segment and communicate via the proxy ARP interface as if in the same physical network. Proxy ARP will check the route table to determine whether the destination network is reachable before responding to the ARP request; ARP request will only be responded if the destination is reachable. Note: the ARP request matching default route will not use proxy. **Example:** Enable proxy ARP for VLAN 1. Switch(Config-if-Vlan1)#ip proxy-arp #### 1.6.6 I3 hashselect Command: |3 hashselect [<crc16| | crc16u | crc32l | crc32u | lsb >] Function: Set L3 table (hardware ARP table) HASH algorithm. Parameters: <crc16| | crc16u | crc32l | crc32u | lsb> is a specified HASH algorithm. The system default value is crc32u. Command Mode: Global Configuration Mode. **Usage Guide:** HASH algorithm is a fast searching algorithm. Setting that of L3 table will change the storage location and order of ARP entries in the hardware. This command is mainly used to solve the conflicts of ARP entries in the hardware table. When using the command to change the HASH algorithms of L3 table, the new HASH algorithm will take effect after the consumers save the configuration and restart system. The system will use the primary HASH algorithms before restart system. Since all HASH algorithms may have HASH crashes under certain circumstances, particular network configuration requires particular HASH algorithm. After repeated tests and verifications, the recommended order of the five HASH algorithms mentioned above is: crc32u, crc32l, crc16u, crc16l. Generally speaking, lsb algorithm is not recommended. When using this command to change the HASH algorithms of L3 table, users should make effective analysis of the network ARP configuration. That is why this command should uses under the guide of technicians from the vendor after they analyze the network ARP configuration. **Examples:** Set the HASH algorithm as crc32u. Switch(Config-if-Vlan1)#I3 hashselect crc32u ### **1.6.7 show arp** Command: show arp [<ipaddress>] [<vlan-id>] [<hw-addr>] [type {static | dynamic}] [count] [vrf word] Function: Displays the ARP table. **Parameters:** <*ipaddress*> is a specified IP address; <*vlan-id*> stands for the entry for the identifier of specified VLAN; <*hw-addr*> for entry of specified MAC address; **static** for static ARP entry; **dynamic** for dynamic ARP entry; **count** displays number of ARP entries; **word** is the specified vrf name. Command mode: Admin Mode **Usage Guide:** Displays the content of current ARP table such as IP address, MAC address, hardware type, interface name, etc. #### **Example:** Switch#show arp ARP Unicast Items: 7, Valid: 7, Matched: 7, Verifying: 0, Incomplete: 0, Failed: 0, None: 0 | Address | Hardware Addr | Interface | Port | Flag | |----------|-------------------|-----------|--------------|---------| | 50.1.1.6 | 00-0a-eb-51-51-38 | Vlan50 | Ethernet1/11 | Dynamic | | 50.1.1.9 | 00-00-00-00-09 | Vlan50 | Ethernet1/1 | Static | | 150.1.1.2 | 00-00-58-fc-48-9f | Vlan150 | Ethernet1/4 | Dynamic | |-----------|-------------------|---------|-------------|---------| | | | | | | | Displayed information | Explanation | |-----------------------|---| | Total arp items | Total number of ARP entries. | | Valid | ARP entry number matching the filter conditions | | | and attributing the legality states. | | Matched | ARP entry number matching the filter conditions. | | Verifying | ARP entry number at verifying again validity for | | | ARP. | | InCompleted | ARP entry number have ARP request sent without | | | ARP reply. | | Failed | ARP entry number at failed state. | | None | ARP entry number at begin-found state. | | Address | IP address of ARP entries. | | Hardware Address | MAC address of ARP entries. | | Interface | Layer 3 interface corresponding to the ARP entry. | | Port | Physical (Layer2) port corresponding to the ARP | | | entry. | | Flag | Describes whether ARP entry is dynamic or static. | ## 1.6.8 show arp traffic Command: show arp traffic **Function:** Display the statistic information of ARP messages of the switch. For box switches, this command will only show statistics of APP messages received and sent from the current boardcard. **Command mode:** Admin and Config Mode Usage Guide: Display statistics information of received and sent APP messages. **Example:** Switch#show arp traffic ARP statistics: Rcvd: 10 request, 5 response Sent: 5 request, 10 response #### 1.7 Commands for I3 station movement #### 1.7.1 I3-station-move Command: I3-station-move no I3-station-move Function: Enable I3-station-move, the no command disables I3-station-move function. When arp/nd swith over the port in normal condition, learn the port information of arp/nd entry again according to arp/nd packets. If PC or other network nodes switch over the port, non-security switchover (ARP packets are not sent or received) does not process to learn again. New I3 station movement is used to satisfy arp/nd switchover in specific condition. When MAC switch over the port, it is considered to be security switchover, any network packets (src mac
is the network node that process switchover) received from new port spring arp/nd switchover, learn arp/nd to new port. Parameters: <ip_address>: IP address at the same field with interface address <mac_address>: MAC address ethernet: Ethernet port <portName>: Layer 2 port name Default: Disable. Command Mode: Global mode Usage Guide: I3-station-move takes effect after reboot switch. Example: Switch(Config)# I3-station-move # Chapter 2 Commands for ARP Scanning Prevention #### 2.1 anti-arpscan enable [ip|port] Command: anti-arpscan enable [ip|port] no anti-arpscan enable [ip|port] Function: Globally enable ARP scanning prevention function; "no anti-arpscan enable" command globally disables ARP scanning prevention function. Parameters: None. Default Settings: Enable or disable ARP scanning prevention function based on ip or port in the same time. Command Mode: Global configuration mode **User Guide:** When remotely managing a switch with a method like telnet, users should set the uplink port as a Super Trust port before enabling anti-ARP-scan function, preventing the port from being shutdown because of receiving too many ARP messages. After the anti-ARP-scan function is disabled, this port will be reset to its default attribute, that is, Untrust port. **Example:** Enable the ARP scanning prevention function of the switch. Switch(config)#anti-arpscan enable ip ## 2.2 anti-arpscan port-based threshold Command: anti-arpscan port-based threshold <threshold-value> no anti-arpscan port-based threshold **Function:** Set the threshold of received messages of the port-based ARP scanning prevention. If the rate of received ARP messages exceeds the threshold, the port will be closed. The unit is packet/second. The "no anti-arpscan port-based threshold" command will reset the default value, 10 packets/second. Parameters: rate threshold, ranging from 2 to 200. Default Settings: 10 packets /second. Command Mode: Global Configuration Mode. **User Guide:** the threshold of port-based ARP scanning prevention should be larger than the threshold of IP-based ARP scanning prevention, or, the IP-based ARP scanning prevention will fail. **Example:** Set the threshold of port-based ARP scanning prevention as 10 packets /second. Switch(config)#anti-arpscan port-based threshold 10 #### 2.3 anti-arpscan ip-based level1|level2 threshold Command: anti-arpscan ip-based level1|level2 threshold <threshold-value> no anti-arpscan ip-based level1|level2 threshold **Function:** Set the level-1 or level-2 threshold of received messages of the IP-based ARP scanning prevention. By default the level-1 threshold is 4p/s, the level-2 threshold is 8p/s. The level-2 threshold must be high than the level-1 threshold. Parameters: rate threshold, ranging from 1 to 200. **Default Settings:** By default the level-1 threshold is 4p/s, the level-2 threshold is 8p/s. Command Mode: Global configuration mode **User Guide:** The threshold of port-based ARP scanning prevention should be larger than the threshold of IP-based ARP scanning prevention, or, the IP-based ARP scanning prevention will fail. **Example:** Set the threshold of IP-based ARP scanning prevention as 6 packets/second. Switch(Config)# anti-arpscan ip-based level1 threshold 6 ## 2.4 anti-arpscan trust Command: anti-arpscan trust { port | supertrust-port | iptrust-port } no anti-arpscan trust {port | supertrust-port | iptrust-port} Function: Configure a port as a trusted port or a super trusted port;" **no anti-arpscan** trust <port | supertrust-port>"command will reset the port as an untrusted port." Parameters: None. **Default Settings:** By default all the ports are non-trustful. **Command Mode:** Port configuration mode **User Guide:** If a port is configured as a trusted port, then the ARP scanning prevention function will not deal with this port, even if the rate of received ARP messages exceeds the set threshold, this port will not be closed, but the non- trustful IP of this port will still be checked. If a port is set as a super trusted port, then neither the port nor the IP of the port will be dealt with. If the port is already closed by ARP scanning prevention, it will be opened right after being set as a trusted port. If a port is set as a trusted IP port, then the IP will not be dealt with, but the port will be dealt with. If the IP is already closed by ARP scanning prevention, it will be opened right after being set as a trusted IP port. When remotely managing a switch with a method like telnet, users should set the uplink port as a Super Trust port before enabling anti-ARP-scan function, preventing the port from being shutdown because of receiving too many ARP messages. After the anti-ARP-scan function is disabled, this port will be reset to its default attribute, that is, Untrust port. **Example:** Set port ethernet 4/5 of the switch as a trusted port. Switch(config)#in e4/5 Switch(Config-If-Ethernet4/5)# anti-arpscan trust port #### 2.5 anti-arpscan trust ip Command: anti-arpscan trust ip <ip-address> [<netmask>] no anti-arpscan trust ip <ip-address>[<netmask>] Function: Configure trusted IP;" no anti-arpscan trust ip <ip-address> [<netmask>]"command reset the IP to non-trustful IP. Parameters: <ip-address>: Configure trusted IP address; <netmask>: Net mask of the IP. **Default Settings:** By default all the IP are non-trustful. Default mask is 255.255.255.255 Command Mode: Global configuration mode **User Guide:** If a port is configured as a trusted port, then the ARP scanning prevention function will not deal with this port, even if the rate of received ARP messages exceeds the set threshold, this port will not be closed. If the port is already closed by ARP scanning prevention, its traffic will be recovered right immediately. **Example:** Set 192.168.1.0/24 as trusted IP. Switch(config)#anti-arpscan trust ip 192.168.1.0 255.255.255.0 #### 2.6 anti-arpscan recovery enable Command: anti-arpscan recovery enable no anti-arpscan recovery enable Function: Enable the automatic recovery function, "no anti-arpscan recovery enable" command will disable the function. Parameters: None **Default Settings:** Disable the automatic recovery function Command Mode: Global configuration mode User Guide: If the users want the normal state to be recovered after a while the port is closed, they can configure this function. **Example:** Enable the automatic recovery function of the switch. Switch(config)#anti-arpscan recovery enable #### 2.7 anti-arpscan recovery time Command: anti-arpscan recovery time <seconds> no anti-arpscan recovery time Function: Configure automatic recovery time; "no anti-arpscan recovery time" command resets the automatic recovery time to default value. **Parameters:** Automatic recovery time, in second ranging from 5 to 86400. Default Settings: 300 seconds. Command Mode: Global configuration mode User Guide: Automatic recovery function should be enabled first. **Example:** Set the automatic recovery time as 3600 seconds. Switch(config)#anti-arpscan recovery time 3600 ## 2.8 anti-arpscan log enable Command: anti-arpscan log enable no anti-arpscan log enable Function: Enable ARP scanning prevention log function; "no anti-arpscan log enable" command will disable this function. Parameters: None. **Default Settings:** Disable ARP scanning prevention log function. Command Mode: Global configuration mode User Guide: After enabling ARP scanning prevention log function, users can check the detailed information of ports being closed or automatically recovered by ARP scanning prevention or IP being disabled and recovered by ARP scanning prevention. The level of the log is "Warning". **Example:** Enable ARP scanning prevention log function of the switch. Switch(config)#anti-arpscan log enable #### 2.9 anti-arpscan trap enable [level1|level2] Command: anti-arpscan trap enable [level1|level2] #### no anti-arpscan trap enable [level1|level2] **Function:** Enable ARP scanning prevention SNMP Trap function; "**no anti-arpscan trap enable [level1|level2]**" command disable ARP scanning prevention SNMP Trap function. Parameters: None. Default Settings: By default disable or enable level-1 limited speed or level-2 insulate trap function. Command Mode: Global configuration mode **User Guide:** After enabling ARP scanning prevention SNMP Trap function, users will receive Trap message whenever a port is closed or recovered by ARP scanning prevention, and whenever IP t is closed or recovered by ARP scanning prevention. **Example:** Enable ARP scanning prevention SNMP Trap function of the switch. Switch(config)#anti-arpscan trap enable level1 ## 2.10 anti-arpscan ip-based level2 action {isolate | discard-ARP} Command: anti-arpscan ip-based level2 action {isolate | discard-ARP} **Function:** After above level-2 threshold, users can configure ip business isolation and discard ARP packets. Parameters: isolate—the ip business is isolated, discard-ARP --- Discard APR packets from the ip and keep original ARP item. The default is discard-ARP. Command Mode: Global configuration mode **User Guide:** After above level-2 threshold, the protect action is configure diacard-arp. Discard ARP packets of the ip and ip data transfer normally when port received a ARP packets whose rate above level-2 threshold and the source is a ip. Configure protect action is isloate when above level-2 threshold, discard ARP packets and ip date when port received a ARP packets whose rate above level-2 threshold and the source is a ip. **Example:** Switch(config)#anti-arpscan ip-based level2 action isolate ### 2.11 anti-arpscan FFP max-num < num> Command: anti-arpscan FFP max-num <num> **Function:** The maximum quantity of ARP scanning prevention function occupied FFP item. **Parameters:** <1-1024>, the default is 200 available resources. Command Mode: Global configuration mode **User Guide:** When port received a arp packets whose source above max-num and arp rate of every source ip above level-1 or level-2 threshold, users can set a
higher value for ffp item after ffp resource exhausted. Example: Switch(config)#anti-arpscan ffp max-num 1024 #### 2.12 anti-arpscan ip-based arp-to-cpu speed<pps> Command: anti-arpscan ip-based arp-to-cpu speed<pps> no anti-arpscan ip-based arp-to-cpu speed Function: Configure the rate of ARP send to CPU when level-1 threshold overrun. **Parameters:** <1-20>, the default is 1p/s. Command Mode: Global configuration mode User Guide: Used for configuring the rate of cpu in arp packets after arp rate above level-1 limited rate, it can be modified on spot. Example: Switch(config)#anti-arpscan ip-based arp-to-cpu speed 2 #### 2.13 clear anti-arpscan attack-list {ip <IP Address>| all} Command: clear anti-arpscan attack-list {ip <IP Address> | all} Function: Clear the ARP limit for the specific host or all the hosts manually. Parameters: <IP Address>: the IP address of the specific host. Command Mode: Admin Mode. **Usage Guide:** When the speed of arp packet exceeds the limit value of first or second level, use this command to clear the table and use the command of debug anti-arpscan ip to view the deleted table. **Example:** Switch#clear anti-arpscan attack-list ip 30.1.1.6 ## 2.14 clear anti-arpscan attack-history-list {ip <IP Address>| all} Command: clear anti-arpscan attack-history-list {ip <IP Address> | all} **Function:** Clear the history attacks source information of the specific host or all hosts manually. Parameters: <IP Address>: the IP address of the specific host. Command Mode: Admin Mode. **Usage Guide:** Use this command to clear the history attacks information of the specific host or all hosts manually. And use the command of show anti-arpscan ip-based attack-list history to view the deleted table. **Example:** Switch#clear anti-arpscan attack-history-list ip 30.1.1.6 #### 2.15 clear anti-arpscan speed-limit< IP Address> Command: clear anti-arpscan speed-limit< IP Address> Function: Flush ARP limited rate for specified host manually. Parameters: Ip address of specified host. Command Mode: Admin Mode. **User Guide:** Use the command to clear items when arp packets above level-1 limited rate. Users can use debug command debug anti-arpscan ip to show deleted items. Example: Switch#clear anti-arpscan speed-limit 30.1.1.6 ## 2.16 clear anti-arpscan ip-isolate<IP Address> Command: clear anti-arpscan ip-isolate<IP Address> Function: Flush IP business isolation for specified host manually. Parameters: IP address of specified host. Command Mode: Admin Mode. **User Guide:** Use the command to clear items when arp packets above level-2 limited rate. Users can use debug command debug anti-arpscan ip to show deleted items. **Example:** Switch#clear anti-arpscan ip-isolate 30.1.1.6 #### 2.17 debug anti-arpscan Command: debug anti-arpscan [port | ip] no debug anti-arpscan [port | ip] Function: Enable the debug switch of ARP scanning prevention; "no debug anti-arpscan [port | ip]" command disables the switch. Parameters: None. **Default Settings:** Disable the debug switch of ARP scanning prevention Command Mode: Admin Mode **User Guide:** After enabling debug switch of ARP scanning prevention users can check corresponding debug information or enable the port-based or IP-based debug switch separately whenever a port is closed by ARP scanning prevention or recovered automatically, and whenever IP t is closed or recovered . **Example:** Enable the debug function for ARP scanning prevention of the switch. Switch#debug anti-arpscan #### 2.18 show anti-arpscan Command: show anti-arpscan [trust {ip | port | supertrust-port | iptrust-port} | prohibited {ip | port}] Function: Display the operation information of ARP scanning prevention function. Parameters: None. **Default Settings:** Display every port to tell whether it is a trusted port and whether it is closed. If the port is closed, then display how long it has been closed. Display all the trusted IP and disabled IP. Command Mode: Admin Mode User Guide: Use "show anti-arpscan trust port" if users only want to check trusted ports. The reset follow the same rule. **Example:** Check the operating state of ARP scanning prevention function after enabling it. Switch(config)#show anti-arpscan Total port: 28 | Name | Port-property | beShut | shutTime(seconds) | |--------------|---------------|--------|-------------------| | Ethernet1/1 | untrust | N | 0 | | Ethernet1/2 | untrust | N | 0 | | Ethernet1/3 | untrust | N | 0 | | Ethernet1/4 | untrust | N | 0 | | Ethernet1/5 | untrust | Ν | 0 | | Ethernet1/6 | untrust | Ν | 0 | | Ethernet1/7 | untrust | Ν | 0 | | Ethernet1/8 | untrust | N | 0 | | Ethernet1/9 | untrust | Ν | 0 | | Ethernet1/10 | untrust | Ν | 0 | | Ethernet1/11 | untrust | N | 0 | | Ethernet1/12 | untrust | Ν | 0 | | Ethernet4/1 | untrust | Ν | 0 | | Ethernet4/2 | untrust | Ν | 0 | | Ethernet4/3 | untrust | N | 0 | | Ethernet4/4 | trust | Ν | 0 | |--------------|------------|---|----| | Ethernet4/5 | untrust | Ν | 0 | | Ethernet4/6 | supertrust | Ν | 0 | | Ethernet4/7 | untrust | Υ | 30 | | Ethernet4/8 | trust | Ν | 0 | | Ethernet4/9 | untrust | Ν | 0 | | Ethernet4/10 | untrust | Ν | 0 | | Ethernet4/11 | untrust | Ν | 0 | | Ethernet4/12 | untrust | Ν | 0 | | Ethernet4/13 | untrust | Ν | 0 | | Ethernet4/14 | untrust | Ν | 0 | | Ethernet4/15 | untrust | Ν | 0 | | Ethernet4/16 | untrust | Ν | 0 | | Ethernet4/17 | untrust | Ν | 0 | | Ethernet4/18 | untrust | Ν | 0 | | Ethernet4/19 | untrust | Ν | 0 | | Ethernet4/20 | untrust | Ν | 0 | | Ethernet4/21 | untrust | Ν | 0 | | Ethernet4/22 | untrust | Ν | 0 | | Ethernet4/23 | untrust | N | 0 | | Ethernet4/24 | untrust | Ν | 0 | | | | | | #### Prohibited IP: IP shutTime(seconds) 1.1.1.2 132 Trust IP: 192.168.99.5255.255.255.255192.168.99.6255.255.255.255 ## 2.19 show anti-arpscan ip-based attack-list [history] Command: show anti-arpscan ip-based attack-list [history] Function: Display source information or history source information of ARP scanning attacks prevention. Parameters: None. **Default:** Display the source information of ARP scanning attacks prevention. Command Mode: Admin Mode, Config Mode. **User Guide:** (1) Display ARP scanning attacks prevention source information which includes source ip, corresponding port, vlan, rate and state. When it aboves level-1 threshold, state is Speed-Limit; if above level-2, action is discard-arp and state is Discard-Arp, but state is Isolate when action is isolate. (2) Display the history source information of ARP scanning attacks prevention, including source IP, port, vlan, times of attacks, state of last attack and internal if attacking. When it aboves level-1 threshold, state is Speed-Limit; if above level-2, action is discard-arp and state is Discard-Arp, but state is Isolate when action is isolate. #### **Example:** Switch#show anti-arpscan ip-based attack-list | SIP-Addr | Port | VLAN | Spee | d ARP | -Count | |---|--------------------------|------|------|------------|---------| | State | | | | | | | 30.1.1.6 | Ethernet2/48 | 26 | | 4 | 57 | | Speed-Limit | | | | | | | 30.1.1.4 | Ethernet2/48 | 26 | | 4 | 56 | | Speed-Limit | | | | | | | Switch#show anti-arpscan ip-based attack-list history | | | | | | | SIP-Addr | Port | VLAN | Att | tack-Times | State | | Keep-Time | | | | | | | 30.1.1.6 | Ethernet2/48 | 26 | 6 | Spee | d-Limit | | 0 weeks,0 days,0 hou | urs,8 minutes,46 seconds | | | | | | 30.1.1.4 | Ethernet2/48 | 26 | 3 | Spee | d-Limit | | 0 weeks,0 days,0 hours,0 minutes,28 seconds | | | | | | ## 2.20 show anti-arpscan ip-based running-config Command: show anti-arpscan ip-based running-config **Function:** Display the current configuration of arp scanning prevention. Parameters: None. Command Mode: Admin Mode, Config Mode. **User Guide:** Display the current configuration of arp scanning prevention, the action after level-1 threshold and level-2 threshold above level-2 threshold, cpu rate and the size of ffp items and so on after arp above level-1 threshold. #### **Example:** Switch(config)#show anti-arpscan ip-based running-config level1 thrshould: 4 level2 thrshould: 8 level2 action: Discard-Arp arp-to-cpu speed: 2 actlp-num: 0 ffp-max: 1024 ffp-used: 0 # Chapter 3 Commands for Preventing ARP, ND Spoofing #### 3.1 ip arp-security updateprotect Command: ip arp-security updateprotect no ip arp-security updateprotect Function: Forbid ARP table automatic update. The "no ip arp-security updateprotect" command re-enables ARP table automatic update. Parameter: None. Default: ARP table automatic update. **Command Mode:** Global Mode/ Interface configuration. **User Guide:** Forbid ARP table automatic update, the ARP packets conflicting with current ARP item (e.g. with same IP but different MAC or port) will be dropped, the others will be received to update aging timer or create a new item; so, the current ARP item keep unchanged and the new item can still be learned. **This function and** I3 station move are mutex exclusive. Because I3 station move (it is enabled by default.) may automatically update the corresponding relation between MAC and port, it should be disabled when enabling ARP security update protect function. #### **Example:** Switch(Config-if-Vlan1)#ip arp-security updateprotect. Switch(config)#ip arp-security updateprotect ## 3.2 ipv6 nd-security updateprotect Command: ipv6 nd-security updateprotect no ipv6 nd-security updateprotect Function: Forbid ND automatic update function of IPv6 Version, the no command resets ND automatic update function. Parameter: None **Default:** ND update normally. Command Mode: Global Mode/ Interface configuration **User Guide:** Forbid ND table automatic update, the ND packets conflicting with current ND item (e.g. with same IP but different MAC or port) will be droped, the others will be received to update aging timer or create a new item; so, the current ND item keep unchanged and the new item can still be learned. #### **Example:** Switch(Config-if-Vlan1)#ipv6 nd -security
updateprotect Switch(config)#ipv6 nd -security updateprotect #### 3.3 ip arp-security learnprotect Command: ip arp-security learnprotect no ip arp-security learnprotect Function: Forbid ARP learning function of IPv4 Version, the "no ip arp-security learnprotect" command re-enables ARP learning function. Parameter: None. **Default:** ARP learning enabled. Command Mode: Global Mode/ Interface Configuration. Usage Guide: This command is for preventing the automatic learning and updating of ARP. Unlike ip arp-security updateprotect, once this command implemented, there will still be timeout even if the switch keeps sending Request/Reply messages. #### **Example:** Switch(Config-if-Vlan1)# ip arp-security learnprotect Switch(config)# ip arp-security learnprotect #### 3.4 ipv6 nd-security learnprotect Command: ipv6 nd-security learnprotect no ipv6 nd-security learnprotect Function: Forbid ND learning function of IPv6 Version, the no command re-enables ND learning function. Parameter: None. **Default:** ND learning enabled. Command Mode: Global Mode/ Interface Configuration. **Usage Guide:** This command is for preventing the automatic learning and updating of ND. Unlike ip nd-security updateprotect, once this command implemented, there will still be timeout even if the switch keeps sending Request/Reply messages. #### **Example:** Switch(Config-if-Vlan1)#ipv6 nd -security learnprotect Switch(config)#ipv6 nd -security learnprotect #### 3.5 ip arp-security convert Command: ip arp-security convert Function: Change all of dynamic ARP to static ARP. Parameter: None Command Mode: Global Mode/ Interface configuration **Usage Guide**: This command will convert the dynamic ARP entries to static ones, which, in combination with disabling automatic learning, can prevent ARP binding. Once implemented, this command will lose its effect. **Example:** Switch(Config-if-Vlan1)#ip arp -security convert Switch(config)#ip arp -security convert #### 3.6 ipv6 nd-security convert Command: ipv6 nd-security convert Function: Change all dynamic ND to static ND. Parameter: None **Command Mode:** Global Mode/ Interface Configuration **Usage Guide**: This command will convert the dynamic ND entries to static ones, which, in combination with disabling automatic learning, can prevent ND binding. Once implemented, this command will lose its effect. **Example:** Switch(Config-if-Vlan1)#ipv6 nd -security convert Switch(config)#ipv6 nd -security convert #### 3.7 clear ip arp dynamic Command: clear ip arp dynamic Function: Clear all of dynamic ARP on interface. Parameter: None **Command Mode:** Interface Configuration Usage Guide: This command will clear dynamic entries before binding ARP. Once implemented, this command will lose its effect. Example: Switch(Config-if-Vlan1)#clear ip arp dynamic ## 3.8 clear ipv6 nd dynamic Command: clear ipv6 nd dynamic Function: Clear all dynamic ND on interface. Parameter: None Command mode: Interface Configuration Usage Guide: This command will clear dynamic entries before binding ND. Once implemented, this command will lose its effect. Example: Switch(Config-if-Vlan1)#clear ipv6 nd dynamic ## **Chapter 4 Command for ARP GUARD** ## 4.1 arp-guard ip Command: arp-guard ip <addr> no arp-guard ip <addr> Function: Add an ARP GUARD address, the no command deletes ARP GUARD address. **Parameters: <addr>** is the protected IP address, in dotted decimal notation. **Default:** There is no ARP GUARD address by default. Command Mode: Port configuration mode **Usage Guide:** After configuring the ARP GUARD address, the ARP messages received from the ports configured ARP GUARD will be filtered. If the source IP addresses of the ARP messagse match the ARP GUARD address configured on this port, these messages will be judged as ARP cheating messages, which will be directly dropped instead of sending to the CPU of the switch or forwarding. 16 ARP GUARD addresses can be configured on each port. #### **Example:** Configure the ARP GUARD address on port ethernet1/1 as 100.1.1.1. Switch(config)#interface ethernet1/1 Switch(Config-If-Ethernet 1/1)#arp-guard ip 100.1.1.1 Delete the ARP GUARD address on port ethernet1/1 as 100.1.1.1. Switch(config)#interface ethernet1/1 Switch(Config-If-Ethernet 1/1)#no arp-guard ip 100.1.1.1 # Chapter 5 Command for ARP Local Proxy ### 5.1 ip local proxy-arp Command: ip local proxy-arp no ip local proxy-arp Function: Enable/disable the local ARP Proxy function of a specified interface. Parameters: None. Default Settings: This function is disabled on all interfaces by default. Command Mode: Interface VLAN Mode. **User Guide:** This function is disabled on all interfaces by default, and differs from the original proxy-arp in that this function acts as an ARP Proxy inside the same layer-3 interface and thus directs the layer-3 forwarding of the switch. **Example:** Enable the local ARP Proxy function of interface VLAN1. Switch(Config-if-Vlan1)# ip local proxy-arp ## Chapter 6 Commands for Gratuitous ARP Configuration #### 6.1 ip gratuitous-arp Command: ip gratuitous-arp [<interval-time>] no ip gratuitous-arp **Function:** To enabled gratuitous ARP, and specify update interval for gratuitous ARP. The no form of this command will disable the gratuitous ARP configuration. **Parameters:** <interval-time> is the update interval for gratuitous ARP with its value limited between 5 and 1200 seconds and with default value as 300 seconds. **Command Mode:** Global Configuration Mode and Interface Configuration Mode. **Default:** Gratuitous ARP is disabled by default. **Usage Guide:** When configuring gratuitous ARP in global configuration mode, all the Layer 3 interfaces in the switch will be enabled to send gratuitous ARP request. If gratuitous ARP is configured in interface configuration mode, then only the specified interface is able to send gratuitous ARP requests. When configuring the gratuitous ARP, the update interval configuration from interface configuration mode has higher preference than that from the global configuration mode. #### **Example:** 1) To enable gratuitous ARP in global configuration mode, and set the update interval to be 400 seconds. Switch>enable Switch#config Switch(config)#ip gratuitous-arp 400 2) To enable gratuitous ARP for interface VLAN 10 and set the update interval to be 350 seconds. Switch(config)#interface vlan 10 Switch(Config-if-Vlan10)#ip gratuitous-arp 350 #### 6.2 show ip gratuitous-arp Command: show ip gratuitous-arp [interface vlan < vlan-id>] **Function:** To display configuration information about gratuitous ARP. Parameters: <vlan-id> is the VLAN ID. The valid range for <vlan-id> is between 1 and 4094. **Command Mode:** All the Configuration Modes. **Usage Guide:** In all the configuration modes, the command **show ip gratuitous arp** will display information about the gratuitous ARP configuration in global and interface configuration mode. The command **show ip gratuitous-arp interface vlan <***vlan-id>* will display information about the gratuitous ARP configuration about the specified VLAN interface. #### Example: 1) To display information about gratuitous ARP configuration in both global and interface configuration modes. Switch#show ip gratuitous-arp Gratuitous ARP send is Global enabled, Interval-Time is 300(s) Gratuitous ARP send enabled interface vlan information: Name Interval-Time(seconds) Vlan1 400 Vlan10 350 2) To display gratuitous ARP configuration information about interface VLAN 10. Switch#show ip gratuitous-arp interface vlan 10 Gratuitous ARP send interface Vlan10 information: Name Interval-Time(seconds) Vlan10 350 ## Chapter 7 Commands for Keepalive Gateway #### 7.1 keepalive gateway Command: keepalive gateway <ip-address> [{<interval-seconds> / msec <interval-millisecond>} [retry-count]] no keepalive gateway **Function:** Enable keepalive gateway, configure the interval that ARP request packet is sent and the retry-count after detection is failing, the no command disables the function. Parameters: ip-address: IP address of the gateway interval-seconds: The interval (unit is second) that ARP request packet is sent, ranging between 1 and 32767. If there is no configuration, the default is 10 seconds. interval-millisecond: The interval (unit is millisecond) that ARP request packet is sent, ranging between 160 and 999. retry-count: Determine the retry-count after detection is failing. If there is no configuration, the default is 5 times. **Default:** Disable keepalive gateway. Command Mode: Interface mode. **Usage Guide:** This command is supported by layer 3 switch and the detection method is used to point-to-point topology mode only. **Example:** Switch(config)#interface vlan 1 Switch(config-if-vlan1)#keealive gateway 1.1.1.1 3 10 #### 7.2 show ip interface Command: show ip interface [interface-name] **Function:** Show IPv4 running status of the specified interface. Parameters: interface-name is the specified interface name. If there is no parameter, show IPv4 running status of all interfaces. Default: None. **Command Mode:** Admin and configuration mode. **Usage Guide:** Show IPv4 running status of the interface. #### Example: Switch(config)#show ip interface brief IndexInterfaceIP-AddressProtocol3001Vlan11.1.1.2up9000Loopback127.0.0.1up ### 7.3 show keepalive gateway Command: show keepalive gateway [interface-name] **Function:** Show keepalive running status of the specified interface. Parameters: interface-name is the specified interface name. If there is no parameter, show keepalive running status of all interfaces. Default: None. Command Mode: Admin and configuration mode. **Usage Guide:** Show keepalive running status of the interface. **Example:** Switch(config)#show keepalive gateway interface Vlan1 gateway 1.1.1.1 time 10s retry 1 remain 4 now UP ## **Chapter 8 Commands for UFT** #### 8.1 Show system working mode Command: show system working mode {support|current|config} {member<member-id>|} Function: Show the UFT mode that the board can
configure and the entry size of the mode **Parameters:** support: Show the entry size of the each mode that the board supports; current: Show the effective mode and the entry size; config: Show the configured mode and entry size; member: member id of the vsf mode. Default: None. Command Mode: Global Mode. Usage Guide: The member is optional. If it is independent mode, the member does not need being input. #### **Example:** View the current configured UFT mode of member 8 and the effective UFT mode. Switch#show system working mode config member 8 -----slot: member 8, slot 1 ----- config system working mode: mode 3(standard) mode 3(standard): MAC=32K, IP=48K, ROUTER=8K Switch#show system working mode current member 8 -----slot: member 8, slot 1 ------ current system working mode: mode 3(standard) mode 3(standard): MAC=32K, IP=48K, ROUTER=8K ## 8.2 System working mode Command: system working mode {bridgee|routee|standard|<word>} {member<member-id>|} **Function:** Configure the UFT working mode according to the user business needs and it can be effective after restarting the line card. Parameters: bridge: enhanced mac mode; route: enhanced route mode; standard: standard mode; member: member id of the vsf mode. **Default:** The device is working in the standard mode as default. Command Mode: Global Mode. **Usage Guide:** The member is optional. If it is independent mode, the member does not need being input. After modified the UFT working mode, it will be effective after restarting the device. #### Example: Modify the UFT working mode of member 8. Switch(config)#system working mode bridge member 8 Please save the configuration, it will take effect after the next system restart! Save the configuration and restart the member 8. Switch#write Confirm to overwrite current startup-config configuration [Y/N]:y Write running-config to current startup-config successful Switch#reset member 8 slot 1