ΟΟΟ «ΗΑΓ»

Россия, 620110, Екатеринбург, ул. Краснолесья, 12а, 4 этаж +7 (343) 379-98-38 · sales@nag.company · nag.company

УСТРОЙСТВО УДАЛЁННОГО КОНТРОЛЯ И УПРАВЛЕНИЯ SNR-ERD-2.3 SNR-ERD-2.3 termo out SNR-ERD-2.3-DHT22

Руководство по эксплуатации

Екатеринбург 2023

Настоящее руководство по эксплуатации распространяется на устройства удалённого контроля и управления SNR-ERD-2.3, SNR-ERD-2.3 termo out (далее - ERD-2.3). Руководство по эксплуатации описывает особенности и порядок действий при подготовке устройств к использованию, при использовании по назначению.

ВНИМАНИЕ!

 К работе с устройствами допускается квалифицированный персонал, изучивший данное руководство и имеющий группу по электробезопасности не ниже второй.
Производитель вправе изменять конструкцию устройства без уведомления эксплуатирующих предприятий.

НТТР	Обозначения и сокращения принятые в РЭ Hypertext transfer protocol
IP	Internet protocol
OID	Object identifier
SNMP	Simple network management protocol
ТСР	Transmission control protocol
UDP	User datagram protocol
ПЭВМ	Персональная электронно вычислительная машина

Прочие сокращения представлены далее по тексту. Перечень нормативных документов, на которые ссылается настоящее РЭ приведён в разделе «Ссылочные нормативные документы».

ОПИСАНИЕ УСТРОЙСТВА

ERD-2.3 представляет собой аппаратно-программный комплекс на основе микроконтроллера AT Mega328P. В энергонезависимой памяти микроконтроллера хранится программное обеспечение (firmware), которое определяет логику работы устройства. Настройка и конфигурирование ERD-2.3 осуществляется посредством встроенного WEB-конфигуратора, SNMP интерфейса.

Назначение

Устройства ERD-2.3 предназначены для контроля за состоянием и параметрами оборудования в телекоммуникационных шкафах: регистрации дискретных сигналов состояния оборудования, выдача команд телеуправления. Управлять оборудованием в ручном и автоматическом, по предустановленным сценариям, режимах.

Внешний вид

Внешний вид устройства SNR-ERD-2.3 представлен на рисунке 1, SNR-ERD-2.3 termo out на рисунке 2, SNR-ERD-2.3-DHT22 на рисунке 3.

Рисунок 1 - Внешний вид SNR-ERD-2.3

Рисунок 2 - Внешний вид SNR-ERD-2.3 termo out

Рисунок 3 - Внешний вид SNR-ERD-2.3-DHT22

Рисунок 4 - Вид ERD-2.3 со стороны многоконтактного разъёма

Рисунок 5 - Вид ERD-2.3 со стороны разъёма RJ-45

Рисунок 6 - Назначение элементов устройства ERD-2.3

На рисунке 6 представлен вид устройства без защитного кожуха, где:

- 1. Разъём для подключения питания устройства (обозначен как DC 5V);
- 2. Многоконтактный разъём для подключения датчиков и исполнительных элементов;

- 3. Разъём для подключения источника питания, функция отслеживание напряжения в
- сети 220 В (обозначен как MONITOR);
- 4. Индикаторы режимов работы устройства (D1, D2);
- 5. Разъём RJ-45 для подключения к сети Ethernet;
- 6. Кнопка сброса устройства к заводским настройкам (Reset);
- 7. Отверстия для крепления устройства.

Технические характеристики

Основные характеристики ERD-2.3 представлены в таблице 1.

Таблица 1 - Технические характеристики

	Значение параметра		
паименование параметра	SNR-ERD-2.3	SNR-ERD-2.3 termo out	SNR-ERD-2.3- DHT22
Тип датчика	1 шт. термодатчик на плате	1 шт. термодатчик на выносном щупе	1шт датчик температуры и влажности
Измерение	-40 °С до + 55 °С	-55 °С до + 125 °С Температура эксплуатации кабеля -55 °С до + 85 °С	влажность 0-100% температура -40 +80 град
Интерфейсы Ethernet	1 шт. (10 BASE-TX)		
Поддерживаемые протоколы	TCP/IP, UDP, SNMP, HTTP		
Дискретные входы	4 шт.		
Дискретные выходы	2 шт. (Ітах=300мА)		
Измерение напряжения	от 0 до 76 Вольт		

Напряжение питания	5 B, DC
Температура эксплуатации	-40 °С до + 55 °С

УСТАНОВКА И ИСПОЛЬЗОВАНИЕ

Эксплуатационные ограничения

Устройство ERD-2.3 предназначено для эксплуатации при следующих условиях:

- температуре от минус 40 °C до плюс 55 °C;

– относительной влажности воздуха до 85% при температуре 25 °C, без образования конденсата;

- атмосферном давлении от 630 до 800 мм рт. ст.

Меры безопасности

К работе с устройством контроля и управления допускается квалифицированный персонал, имеющий группу по электробезопасности не ниже второй, изучивший: настоящее руководство, "Правила технической эксплуатации электроустановок потребителей" и "Правила по охране труда при эксплуатации электроустановок" в части, касающейся электроустановок до 1000 В.

ВНИМАНИЕ!

- Если устройство работает некорректно, ни в коем случае не пытаться чинить его самостоятельно. Связаться с авторизованным сервисным центром.

- Не допускать установку устройства в местах воздействия прямых солнечных лучей и вблизи источников, излучающих тепло.

Настройка перед началом работы

Для настройки устройства контроля и управления выполнить следующие действия:

- Подключить питание;
- Подключить устройство контроля и управления к ПЭВМ, посредством кабеля Ethernet;
- Установить необходимые сетевые настройки на ПЭВМ;
- Открыть программу для просмотра web-страниц, ввести в адресной строке IP-адрес устройства контроля и управления (таблица 2);
- Дождаться загрузки страницы.

······································	
Параметр	Значение
IP-адрес	192.168.15.20
Шлюз	192.168.15.10
IP для трапов	192.168.15.10
Пароль	public
Community read/write	public
Community Trap	public

Таблица 2 - Заводские настройки устройств контроля и управления

Для определения состояния устройства контроля и управления на плате предусмотрена световая индикация, режимы работы световой индикации представлены в таблице 3.

Светодиод	Состояние	Значение состояния
D2 (зелёный)	Выключен	Питание не подключено
	Включён	Питание подключено
RJ-45 (зелёный)	Выключен	Соединение не установлено
	Включён	Соединение установлено

	Мигает	Передача данных
RJ-45 (жёлтый)	Выключен	Скорость передачи 10 Мбит/с
	Включён	Скорость передачи 100 Мбит/с

Работа с WEB-интерфейсом устройств контроля и управления

WEB-интерфейс служит для конфигурирования режимов работы ERD-2.3, визуального контроля за параметрами устройства контроля и управления, за показаниями, полученными от датчиков, управления дискретными выходами (нагрузкой) в ручном режиме. Доступ к WEB-интерфейсу осуществляется через любой браузер, без установки дополнительного ПО, посредством стандартного протокола HTTP.

Описание страниц, разделов, функций WEB-интерфейса представлено в руководстве администратора.

Вид стартовой страницы WEB-интерфейса представлен на рисунке 7.

ETHERNET REMOTE DEVICE	Ethernet Remote	Device-2.3
<u>Main</u> <u>Sensor Statistic</u>	SysName Firmware	ERD-2.3_29:161
<u>Switch Option</u> <u>IP Config</u>	Temperature voltage	30' C 00.00 V
<u>Manual</u> <u>Community</u> <u>Shop</u> Support	Counter of Alarms Counter of SMART1 reset Counter of ERD resets	0 s0 17
201920LX	Own IP (Ethernet)	192.168.15.20

Рисунок 7 - Стартовая страница

Работа с протоколом SNMP

Устройство контроля и управления ERD-2.3 поддерживает работу по протоколу SNMP. Посредством SNMP-интерфейса возможен удаленный контроль и управление устройством ERD-2.3, его параметрами, состоянием дискретных входов/выходов, мониторинг показаний датчиков и другими штатными функциями устройства.

Работа с устройством посредством SNMP протокола описана в руководстве администратора.

Подключение датчиков

Дискретные входы

Устройство ERD-2.3 имеет 4 дискретных входа. На многоконтактном разъёме контакты №: 3, 4, 7, 9. На логическом уровне входы подтянуты к «1», шине +3.3 вольта через резистор 10 кОм. Входы имеют одинаковый функционал, для удобства на WEB-интерфейсе входы подписаны как: ALARM, 1st sensor, 2nd sensor, 3rd sensor. Назначение контактов многоконтактного разъёма представлено в таблице 4. Схема подключения датчиков представлена на рисунке 8.

Номер контакта	Функционал
1	Общий GND
2	Выход: +3.3 В, 100 мА
3	Вход DI: (ALARM) подключение пользовательского датчика (сухой контакт)
4	Вход DI: (1st sensor) подключение пользовательского датчика (сухой контакт)
5	Выход: +5 В, 200 мА
6	Выход DO: (SMART1) Umax = 5 B, Imax = 300 мА, перезагрузка управляемых розеток
7	Вход DI: (2nd sensor) подключение пользовательского датчика (сухой контакт)
8	Выход DO: (SMART2) Umax = 5 B, Imax = 300 мА, переключение пользовательской нагрузки

Таблица 4 - Обозначения контактов многоконтактного разъёма

ΟΟΟ «ΗΑΓ»

Россия, 620110, Екатеринбург, ул. Краснолесья, 12а, 4 этаж +7 (343) 379-98-38 · sales@nag.company · nag.company

9	Вход DI: (3rd sensor) подключение пользовательского датчика (сухой контакт)
10	Вход AI: измерение напряжения от 0 до 76 В DC.

Где:

- DI дискретный вход;
- DO дискретный выход;
- AI аналоговый вход.

К1, К2 - катушка реле S1 - S4 - датчик типа "сухой контакт"

Вход АІ

Устройство оснащено функцией измерения постоянного напряжения в диапазоне от 0 до 76 Вольт. На многоконтактном разъёме контакт № 10. Схема подключения представлена на рисунке 8.

Функция датчик фазы

В устройстве реализован функционал отслеживания наличия напряжения на входе разъёма MONITOR. Допустимый уровень напряжения для данного входа составляет от 5 до 7 вольт. Например: если вход источника питания подключить к сети 220 вольт, а выход (DC 5 B.) к данному входу, можно отслеживать наличие напряжения в сети 220 вольт.

Подключение нагрузки

В устройстве предусмотрено два дискретных выхода (типа «открытый коллектор») для управления нагрузкой. На многоконтактном разъёме контакты №: 6, 8. В WEB-интерфейсе выходы обозначены как SMART1 (6-й контакт на многоконтактном разъёме) и SMART2 (8-й контакт на многоконтактном разъёме). Схема подключения представлена на рисунке 7. Выход SMART1 предназначен для «перезагрузки выхода» - изменения своего состояния с лог. «1» на лог. «0» на 3 секунды, с последующим восстановлением первоначального состояния. Выход управляется в ручном или автоматическом режиме:

• Ручной режим - позволяет в любой момент времени со страницы WEB-интерфейса «перезагрузить выход»;

• Автоматический режим - предустановленный сценарий поведения, в котором при отсутствии ответов на 10 ICMP запросов на указанный IP адрес происходит «перезагрузка выхода».

Выход SMART2 управляется режимами "Manual", "Termostat" или "Gidrolock", выбор режима осуществляется на странице Switch Option из выпадающего списка в окне Mode:

1. Manual - ручной режим управления выходом. В данном режиме выход включается (лог. «1» на выходе), либо выключается (лог. «0» на выходе) пользователем на необходимое время.

2. Termostat - автоматический режим управления выходом, работает в режиме warming (обогрев) или cooling (охлаждение). В полях Critical temperature и Normal temperature задаются значения температуры для режимов работы термостата. Во время работы устройство ориентируется на показания встроенного датчика температуры.

3. Режим Gidrolock. Включение нагрузки (лог. «1» на 8 контакте 10-ти контактного разъёма) осуществляется автоматически, при появлении на дискретном входе управляющего сигнала (лог. «0» на 9 контакте 10-ти контактного разъёма).

Возврат к заводским настройкам

Для приведения устройства контроля и управления к заводским настройкам необходимо удерживать кнопку сброса (Reset) в течение 5 секунд при включённом питании. Момент

сброса настроек сопровождается миганием зелёного индикатора - D2 на плате устройства контроля и управления.

Возможные неисправности

Возможные неисправности и способы их устранения представлены в таблице 5.

Неисправность	Вероятная причина	Способ устранения
Не включается, не горит индикатор питания	Неисправен источник питания	Проверить исправность источника питания, наличие и соответствие уровня напряжения на выходе источника питания.
	Неисправно устройство	Заменить устройство
Не удаётся зайти на WEB интерфейс	Устройство не подключено к источнику питания	Проверить подключение к источнику питания. Индикатор PWR должен быть включен.
	Устройство не подключено к сети Ethernet	Проверить подключение кабеля Ethernet к сетевому разъёму RJ-45.
	Некорректные сетевые настройки, неверный логин и/или пароль.	Вернуть устройство к заводским настройкам кнопкой Reset.

Таблица 5 - Возможные неисправности

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание (далее - TO) следует проводить с соблюдением условий эксплуатации устройства контроля и управления. ТО проводится электротехническим персоналом, имеющим группу по электробезопасности не ниже третьей, в соответствии с графиками и нормами принятыми в организации эксплуатирующей устройство контроля и управления, TO может включать:

- Проверку работоспособности устройства контроля и управления;
- Проверку целостности платы, корпуса (термоусадочной трубки);
- Проверку надёжности креплений, контактных соединений;
- Очистку от пыли и грязи;
- Очистку и антикоррозионную обработку контактов портов.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПО

Назначение программы

Программное обеспечение (далее - ПО) предназначено для управления устройствами удалённого контроля и управления SNR-ERD-2.3, далее устройство ERD-2.3.

Интерфейсы управления

WEB-интерфейс

Встроенный WEB-интерфейс позволяет выполнять следующие функции:

- 1. отображение и управление параметрами устройства контроля и управления;
- 2. отображение показаний с датчика температуры, значений с аналогового входа, состояний дискретных входов;
- 3. управление дискретными выходами в ручном режиме;
- 4. конфигурирование параметров автоматических сценариев управления дискретными выходами, таких как:
 - а. автоматическая перезагрузка дискретного выхода при отсутствии ответов на 10 ICMP-запросов, отправленных на указанный IP-адрес;
 - b. режим термостата, в котором происходит автоматическое включение и выключение дискретного выхода в заданном диапазоне температур;
- 5. управление персональными настройками устройства контроля и управления, в том числе изменение IP-адресов, пароля для работы с устройством;
- 6. отображение МАС-адресов.

SNMP-интерфейс

Устройство контроля и управления ERD-2.3 поддерживает работу по протоколу SNMP. Посредством SNMP-интерфейса возможен удаленный контроль и управление устройством ERD-2.3, его параметрами, состоянием дискретных входов/выходов, мониторинг показаний датчиков и другими штатными функциями устройства.

УПРАВЛЕНИЕ ЧЕРЕЗ WEB-ИНТЕРФЕЙС

Для доступа на WEB-интерфейс, необходимо в строке браузера ввести IP адрес устройства. WEB-интерфейс доступен без авторизации в режиме просмотра. При изменении параметров устройства, необходимо ввести пароль. Заводские настройки представлены в таблице 2.

Страница Main

На главной, стартовой странице WEB-интерфейса (Рисунок 9) представлены:

- 1. SysName имя устройства. Изменяется на произвольное через SNMP протокол. Максимальная длина 20 символов;
- 2. Firmware версия программного обеспечения;
- 3. Temperature показания с датчика температуры;
- 4. voltage показания измеренного напряжения с аналогового входа. Контакт 10 на 10-ти контактном разъёме;
- 5. Counter of Alarms счётчик импульсов дискретного входа, программно назначен как тревожный. Контакт 3 на 10-ти контактном разъёме;
- 6. Counter of SMART1 resets счётчик количества перезагрузок дискретного выхода. Контакт 6 на 10-ти контактном разъёме;
- 7. Counter of ERD resets счётчик количества перезагрузок устройства по питанию;
- 8. Own IP (Ethernet) текущий IP адрес устройства.

Счётчики обнуляются при возвращении устройства к заводским настройкам кнопкой Reset. Предусмотрено автоматическое обновление страницы каждые 10 секунд.

Ethernet Remote I	Device-2.3	
SysName	ERD-2.3_0:244	
Firmware	6.7	
Temperature	23' C	
voltage	12.02 V	
Counter of Alarms	32	
Counter of SMART1 resets2		
Counter of ERD resets	7	
Own IP (Ethernet)	192.168.15.21	

Рисунок 9 - Страница Main

Страница Sensor Statistic (управление дискретными входами)

На странице Sensor Statistic (рисунок 10) осуществляется управление дискретными входами, и отображение текущего состояния входа. В первом столбце отображается имя входа, во втором - статус, в третьем - кнопка переключения состояния, где:

- 1. ALARM дискретный вход (контакт 3 на 10-ти контактном разъёме), отображает статус:
 - a. sens_OFF вход выключен;
 - b. HIGH level на входе логическая «1»;
 - с. LOW level на входе логический «0»;
- 2. The voltage on sens дискретный вход, отображает наличие напряжения на входе MONITOR, статусы:
 - a. sens_OFF вход выключен;
 - b. YES на входе есть напряжение в диапазоне 5-7 В;
 - с. NO на входе отсутствует напряжение;
- 3. 1st sensor дискретный вход (контакт 4 на 10-ти контактном разъёме),

2nd sensor - дискретный вход (контакт 7 на 10-ти контактном разъёме), 3rd sensor - дискретный вход (контакт 9 на 10-ти контактном разъёме), отображают статусы:

- a. sens_OFF вход выключен;
- b. HIGH level на входе логическая «1»;
- с. LOW level на входе логический «0»;
- 4. Password при изменении состояний дискретных входов в данное окно вводится текущий пароль, кнопкой "apply" применяются изменения.

Напротив входов расположены кнопки, которые указывают что произойдёт со входом, если активировать кнопку и применить изменения:

- ON вход будет включен;
- OFF вход будет выключен.

Ethernet I	Remote Devic	ee-2.3
ALARM	sens_OFF	O ON
The voltage on	sens YES	O OFF
1st sensor	HIGH level	OFF
2nd sensor	LOW level	O OFF
3rd sensor	HIGH level	O OFF
Password		apply

Рисунок 10 - Страница Sensor Statistic

Страница Switch Option (управление дискретными выходами)

На странице (рисунок 11) осуществляется управление дискретными выходами, конфигурирование встроенных сценариев управления нагрузкой.

Россия, 620110, Екатеринбург,
ул. Краснолесья, 12а, 4 этаж
+7 (343) 379-98-38 · sales@naa.company · naa.company

Ethornot	Domoto	Dovice 23
	Nemote	Device-2.5

SMART1(n6)	Reset	
SMART2(n8) Mode	Manual 🗸	
SMART2(n8): Now is Or	n⊖ <mark>Switc</mark> h	
Critical temperature	50	' C
Normal temperature	35	' C
	<u>е</u>	

Рисунок 11 - Страница Swich option

Выход SMART1(n6) выведен на 6й контакт 10-ти контактного разъёма. Предназначен для "перезагрузки выхода" - изменения своего состояния с лог. «1» на лог. «0» на 3 секунды, с последующим восстановлением первоначального состояния. Выход управляется в ручном или автоматическом режиме:

- Ручной режим активируется нажатием кнопки Reset, вводом пароля в поле Password и нажатием кнопки "apply";
- Автоматический режим предустановленный сценарий поведения, в котором при отсутствии ответов на 10 ICMP запросов на указанный IP адрес (адрес указывается на странице IP Config в строке MonitoredHostIP) происходит "перезагрузка выхода".

При каждой перезагрузке выхода, счётчик Counter of SMART1 resets увеличивается на единицу.

Выход SMART2(n8) дискретный выход 8й контакт 10-ти контактного разъёма. Управляется режимами "Manual", "Termostat" или "Gidrolock", выбор режима осуществляется из выпадающего списка в окне Mode:

1. Manual - ручной режим управления выходом. В данном режиме выход включается (лог. «1» на выходе, статус Now is ON), рисунок 12:

SMART2(n8)	Mode		ļ	Ma	nual	~
SMART2(n8):	Now	is	On	0	Swi	tch

Рисунок 12 - SMART2 лог. «1»

либо выключается (лог. «0» на выходе, статус Now is OFF), рисунок 13:

SMART2(n8) N	lode	N	1anual	~
SMART2(n8):	Now is	Off C	Swi	tch

Рисунок 13	- SMART2 лог.	«0»
------------	---------------	-----

на необходимое время.

Для переключения состояния выхода, необходимо активировать кнопку Switch, ввести пароль в поле Password, нажать кнопку "apply".

- Termostat автоматический режим управления выходом, работает в режиме warming (обогрев) или cooling (охлаждение). Для переключения режима работы, необходимо активировать кнопку Switch, ввести пароль в поле Password, нажать кнопку "apply". В полях Critical temperature и Normal temperature задаются значения температуры для режимов работы термостата. Во время работы устройство ориентируется на показания встроенного датчика температуры.
 - a. Режим warming.

SMART2(n8) Mode	Termostat 🗸	
Termostat Mode: warmin	ng O Switch	
Critical temperature	20	'C
		10

Рисунок 14 - Режим «warming»

Включение нагрузки (лог. «1» на выходе) осуществляется при температуре ниже критического значения («Critical temperature»), а выключение (лог. «0» на выходе) при температуре выше нормального значения («Normal temperature»).

b. Режим cooling.

SMART2(n8) Mode	Termostat 🗸	
Termostat Mode: coolir	ng O Switch	
Critical temperature	30	'C
N	25	'C

Рисунок 15 - Режим «cooling»

Включение нагрузки (лог. «1» на выходе) осуществляется при температуре выше критического значения («Critical temperature»), а выключение (лог. «0» на выходе) при температуре ниже нормального значения («Normal temperature»).

3. Режим Gidrolock. Включение нагрузки осуществляется автоматически, при появлении на дискретном входе управляющего сигнала (лог. «0» на 9 контакте 10-ти контактного разъёма).

Пример: На дискретном входе высокий уровень сигнала, рисунок 16:

ALARM	sens_OFF	0	ON
The voltage on	sens YES	0	OFF
1st sensor	HIGH level	0	OFF
2nd sensor	LOW level	0	OFF
3rd sensor	HIGH level	0	OFF

Рисунок 16 - Пример высокого уровня сигнала

Нагрузка выключена:

SMART2(n8) M	lode		G	idrolock 🗸
SMART2(n8):	Now	is	Off C	Switch

Рисунок 17 - SMART2 - Нагрузка выключена

На дискретном входе низкий уровень сигнала, рисунок 18:

Ethernet	Remote Devi	ce-2.3
ALARM	sens_OFF	O ON
The voltage on	sensYES	O OFF
1st sensor	HIGH level	○ <mark>O</mark> FF
2nd sensor	HIGH level	O OFF
3rd sensor	LOW level	O OFF

Рисунок 18 - Пример низкого уровня сигнала»

Нагрузка включена:

SMART2(n8) ModeGidrolock ✓SMART2(n8): Now is On ○ Switch

РИСУНОК 19 - ЗМАКТИ - НАГРУЗКА ВК

Страница IP Config

На странице «IP Config» отображаются настройки устройства (рисунок 20):

- 1. Own IP поле для назначения IP-адреса устройству. Рядом отображается MACадрес устройства;
- 2. Gateway поле для ввода IP-адреса шлюза. Рядом отображается MAC-адрес шлюза;
- MonitoredHostIP в поле указывается IP-адрес контролируемого устройства. Рядом отображается MAC-адрес контролируемого устройства. Каждые 16 секунд устройство посылает ICMP запрос на указанный IP-адрес, после 10 не ответов на выходе SMART1(n6) (6-й контакт на 10-ти контактном разъёме) формируется сигнал логического «0» на 3 секунды;
- 4. IP for Trap в поле указывается IP-адрес для отправки Trap сообщений. Рядом отображается MAC-адрес сетевого устройства Trap сообщений;
- 5. New password в поле указывается новый пароль для работы с устройством. Максимальная длина пароля 10 символов;
- 6. Password поле ввода действующего пароля, для подтверждения изменений на странице ввести пароль, нажать кнопку «apply».

Etherno	et Remote	Device-2.3
Own IP	192.168.15.21	f8:f0:82:21:0:f4
Gateway	192.168.15.10	64:d1:54:40:b9:1c
MonitoredHostIP	0.0.0.0	0:0:0:0:0:0
IP for Trap	0.0.0.0	0:0:0:0:0:0
New password		
Password		apply

Рисунок 20 - Страница IP config

Описание устройства SNR-SMART

В SNR_SMART используется реле TR91-5VDC. Рабочее напряжение 5 вольт. Напряжение нагрузки 250VAC и с током нагрузки до 30 А.

Четыре (в зависимости от версии) розетки SNR_SMART подключены к нормально замкнутым контактам реле. Во время перезагрузки на управляющие контакты реле подаётся напряжение, реле срабатывает и отключает контакты нагрузки, тем самым отключая розетки на SNR_SMART.

Рисунок 21 - Внешний вид SNR-SMART - «Блок розеток 19, 1U, 8шт., 220V»

- 1) Переключаемый (управляемый) блок розеток.
- 2) Непереключаемый блок розеток.
- 3) Сигнальный (управляющий) провод

ОБНОВЛЕНИЕ ПО

Встроенное программное обеспечение в устройстве ERD-2.3 обновляется при помощи программы SNR Flasher.

- → Актуальная версия программы доступна по <u>ссылке</u>.
- → Актуальная версия прошивки устройства доступна по <u>ссылке</u>.

Программа SNR Flasher позволяет обновлять ПО через Ethernet-интерфейс. Вид окна программы представлен на рисунке 22.

192.168.15.20	Выбрать прошивку	Прошивка
---------------	------------------	----------

Рисунок 22 - Окно SNR Flasher

Для обновления ПО необходимо выполнить следующее:

- 1. подключить устройство к ПЭВМ кабелем Ethernet, либо организовать доступ по сети до устройства;
- 2. ввести ІР-адрес обновляемого устройства в пустое окно слева;
- 3. открыть файл прошивки, нажав кнопку «Выбрать прошивку»;
- 4. нажать кнопку «Прошивка».

После выполнения этих действий запустится процесс обновления ПО, в процессе обновления несколько раз изменится яркость диода индикации.

Возможно отображение интерфейса на английском языке, для этого необходимо запустить программу с ключом «-eng».

ХРАНЕНИЕ, ТРАНСПОРТИРОВАНИЕ, УТИЛИЗАЦИЯ

Хранение

Устройства контроля и управления рекомендуется хранить в потребительской таре предприятия-изготовителя в отапливаемых вентилируемых складах (хранилищах), с кондиционированием воздуха, при условиях, обеспечивающих соблюдение требований категории 1 (Л) ГОСТ 15150: температура воздуха от плюс 5 до плюс 40 °C, относительная влажность 60 % при 20 °C, 80 % при 25 °C.

Транспортирование

Устройства контроля и управления рекомендуется транспортировать любым видом закрытого транспорта (в железнодорожных вагонах, закрытых автомашинах, трюмах, контейнерах, отапливаемых герметизированных отсеках (при транспортировании воздушным транспортом) и т.д.) в упакованном виде, при условиях, обеспечивающих соблюдение требований категории 5 (ОЖ4) по ГОСТ 15150: температура воздуха от минус 50 до плюс 50 °C, относительная влажность 75 % при 15 °C, 100 % при 25 °C.

Утилизация

Устройства контроля и управления следует утилизировать в результате физического либо морального устаревания.

Порядок утилизации устанавливается в соответствии с требованиями и нормами страны, в которой эксплуатируется устройство контроля и управления.

ТЕХНИЧЕСКАЯ ПОДДЕРЖКА

Вопросы, связанные с настройкой и эксплуатацией устройств контроля и управления, направлять по электронной почте: erd@nag.ru.

Техническая документация и программное обеспечение для устройств контроля и управления доступны на сайте компании: <u>http://data.nag.ru</u>.