

Устройство мониторинга и управления SNR-ERD

Руководство по эксплуатации

SNR-ERD-2.0

Содержание

1. Ведение	4
2. Описание контактов и рабочих узлов устройства:	6
3. Работа с управляющей программой	11
4. Обновление программного обеспечения	12
5. Управление по SNMP протоколу	13
6. Управление через WEB интерфейс	24
7. Подключение датчиков	28
8. Описание устройства SNR_SMART	30

Устройство мониторинга и управления SNR-ERD-2.0

Руководство по эксплуатации

1. Ведение

Устройство предназначено для удалённого мониторинга и управления шкафов с оборудованием. Управление устройством осуществляется посредством SNMP интерфейса, а также имеется информационная WEB страничка.

Рисунок 1 – Внешний вид устройства

Предоставляет следующие виды контроля:

- Замер и предоставление пользователю рабочей температуры устройства. Обособленный внутренний цифровой датчик с защитой от паразитного нагрева внутренней схемой.
- 2) Отслеживание наличия напряжения в сети питания (до ИБП).

3) "Тревожный сенсор" осуществляет контроль над состоянием

датчика открытия двери или датчика вибрации, или другой сигнализации.

 Возможность подключения дополнительных датчиков сухой контакт – Зшт. (например датчик выбирации, датчик объема, датчик протечки воды)

5) Осуществляет удалённую перезагрузку оборудования, при помощи доработанного сетевого фильтра типа "пилот" Блок розеток 19", 220V - «SNR-SMART» ". Или при помощи управляемых розеток SNR SMART-DIN, Функция снабжена счётчиком перезагрузок.

6) Отслеживает работоспособность оборудования при помощи ICMP запросов (Один адрес).

- 7) Осуществляет переключение пользовательской нагрузки (например, вентилятора охлаждения в стойке) при помощи доработанного сетевого фильтра типа "пилот" - " Блок розеток 19", 220V - «SNR-SMART» "или при помощи управляемой розетки SNR SMART-DIN.
- 8) При возникновении критических ситуаций посылает SNMP Trap на указанный адрес.
 - «тревожный сенсор» (сигнализация)
 - «отсутствует напряжение на датчике напряжения»
- «сигнал логической единицы на любом из датчиков «сухой контакт»

- «превышение порогового значения(70 С) замеряемой температуры».

- «в работе термостата при переключении нагрузки»
- 9) Замер и предоставление пользователю напряжения на контакте №10 относительно контакта №1 на десятиконтактном разъёме. Диапазон от 0 до 70 вольт постоянного напряжения, с точностью до сотых долей.

10) Пользователь имеет возможность самостоятельно обновить программное обеспечение посредством Ethernet, в том числе удалённо. Пользователь может самостоятельно испробовать разные версии софта и остановиться на более подходящем для его нужд. Также, технический отдел компании НАГ, готов изменить работу некоторых функций под нужды заказчика.

Датчик температуры находится на плате устройства, и на его показания влияет рабочая температура устройства, показания температуры могут завышаться на 5-9 градусов. При необходимости более точных измерений температуры или необходимости замерять температуру в конкретном месте (например шкафа) вы можете заказать устройства с вынесенным датчиком температуры, который находится за пределами корпуса устройства на шлейфе (длина шлейфа не больше 1.5 метрf). Этот вопрос оговаривается с менеджером при покупке.

Всё управление устройством осуществляется посредством SNMP протокола, а также с web интерфейса, что позволяет с лёгкостью встраивать его в систематизированные системы управления или использовать свой скрипт для обслуживания нескольких устройств.

2. Описание контактов и рабочих узлов устройства:

Рисунок 2 – Контакты и рабочие узлы устройства

- Коннектор питания. Устройство работает от источника питания напряжением 5-6 вольт, мощностью 5 Ватт. При подключении сразу двух блоков розеток SNR-SMART, может потребоваться источник питания с выходной мощностью 10 Ватт. (Средний контакт-плюс, крайний-минус) Напряжение подаётся от блока питания, который подключен к ИБП (если используется) нельзя подключать к перезагружаемой части «SNR-SMART».
- 2. Десятиконтактный разъём, назначение выводов:
- 1) "-" минус
- 2) "+" плюс

Контакты № 1,2 предназначены для подключения датчиков.

- 3) Подключение датчика сигнализации (датчик открытия двери, датчик вибрации, или другой датчик сигнализации).
- 4) подключение любого пользовательского датчика (сухой контакт).

5) положительный вывод перезагрузки «SNR-SMART». ВНИМАНИЕ: на нём присутствует положительный сигнал.

6) отрицательный вывод перезагрузки «SNR-SMART». ВНИМАНИЕ: на этом выводе присутствует отрицательный сигнал в момент перезагрузки «SNR-SMART», время действия 3 секунды.

7) подключение любого пользовательского датчика (сухой контакт).

8) отрицательный вывод «переключения пользовательской нагрузки». ВНИМАНИЕ: на этом выводе присутствует отрицательный сигнал в момент переключения нагрузки.

9) подключение любого пользовательского датчика (сухой контакт).

- 10) Разъём для подключения положительного контакта замеряемого напряжения.
- 3. Разъём для отслеживания наличия напряжения в сети, к разъёму может быть подключен блок питания 5-9В, подключенный к отслеживаемой цепи, например до ИБП.
- 4. Светодиод индикации питания.
- 5. Разъём RJ-45 для подключения к сети Ethernet.
- 6. Кнопка сброса устройства в исходные настройки.

7. Отверстия для крепления устройства (изначально в качестве корпуса устройство поставляется в термоусадке). Вариантом коробки может быть разветвительная коробка – КР2603.

Рисунок 3 – Внешний вид коробки КР2603

Номер контакта	Функционал	Тип	Параметры
1	Общий (GND)	Вход/выход	
2	"плюс" шины питания +3.3В	выход	U=3.3B, Imax=0.1A
3	"сухой контакт" датчика двери	Вход, TTL, подтянут к +3.3В через R=10k	U=3.3B
4	"сухой контакт", пользовательский вход 1	Вход, TTL, подтянут к +3.3В через R=10k	U=3.3B
5	"плюс" шины питания +5В	Выход	U=5B, Ik.max=0.2A при использовании б/п SNR-AC/DC- 5/1
6	Выход SMART_RESET	Выход "открытый коллектор"	Umax=5В, Інагр.max=0.3А
7	"сухой контакт", пользовательский вход 2	Вход, TTL, подтянут к +3.3В через R=10k	U=3.3B
8	Выход подключения пользовательской нагрузки	Выход "открытый коллектор"	Umax=5В, Інагр.max=0.3А
9	"сухой контакт", пользовательский вход 3	Вход, TTL, подтянут к +3.3В через R=10k	U=3.3B
10	Вход для измерения напряжения	Подключен через делитель напряжения на R=324k и R=4.7k	U=076B

Рисунок 4 – Схема подключения датчиков и управления нагрузкой

3. Работа с управляющей программой

Сброс устройства в первоначальные настройки осуществляется удержанием кнопки сброса в течение 4-5 секунд при подключенном питании. В момент сброса несколько раз мигнёт зелёный индикатор.

Устройство поставляется с первоначальными настройками:

IP 192.168.15.20 DGW IP 192.168.15.10 Пароль (он же community) public

При включении устройство должно отвечать на ICMP echo запрос, размером не более 1 кбайт.

4. Обновление программного обеспечения

Программа SNR Flasher позволяет через Ethernet интерфейс обновить программное обеспечение на ERD.

92.168.15.20	Выбрать прошивку	Прошивка
--------------	------------------	----------

Рисунок 5 – Окно программы SNR Flasher

Для обновления ПО необходимо:

- 1) Ввести IP адрес обновляемого устройства
- 2) Открыть файл прошивки кнопкой «Выбрать прошивку»
- 3) Нажать кнопку «Прошивка»

Начнется процесс обновления ПО, при этом несколько раз поменяет яркость зелёный светодиод на ERD.

Программа SNR Flasher поддерживает английский язык интерфейса, для отображения которого программу необходимо запускать с ключом «-eng».

Последняя версия программы SNR Flasher доступна по <u>адресу.</u> Последняя версия прошивки устройства доступна по <u>адресу.</u> Описание изменений в прошивке доступно по <u>адресу.</u>

5. Управление по SNMP протоколу

Для примера была рассмотрена работа устройства в связке с программой Polygon SNMP Manager.

OID	Значение	
5NMPv2-MIB::sysName.0	ERD-2.0_14:168	
5NR-ERD-2::ipAddress.0	192.168.1.191	
5NR-ERD-2::ipGatewayAddress.0	192.168.1.1	
5NR-ERD-2::ipMonitoringDevice.0	0.0.0	
SNR-ERD-2::ipForTrap.0	87.224.177.45	
SNR-ERD-2::resetSmartContact6.0	bypass	
SNR-ERD-2::numberOfResetPositives.0	2	
SNR-ERD-2::remoteControlContact8.0	man_on	
SNR-ERD-2::monitorAlarmSignalContact3.0	sensorOff	
SNR-ERD-2::numberOfAlarmPositives.0	resetPositives	
SNR-ERD-2::monitorAnySensorSignal1contact4.	sensorIs_1	
SNR-ERD-2::monitorAnySensorSignal2contact7.	sensorOff	
SNR-ERD-2::monitorAnySensorSignal3contact9.	sensorOff	
SNR-ERD-2::monitorVoltageSignal.0	voltageIsNo	
SNR-ERD-2::temperatureSensor.0	24	
SNR-ERD-2::voltageSensorContact10.0	0	
SNR-ERD-2::sysVoltageAlarm.0	0	
SNR-ERD-2::communityString.0	public	

Рисунок 6 – Окно программы Polygon SNMP Manager

Описание отображаемых OID-ов и их значений.

Все изменения значений ERD в этой программе производятся путём клика на требуемую позицию с последующим изменением на требуемое значение, и утверждением кнопкой «записать». Для корректной работы устройства, изменение нескольких параметров нужно производить по очереди.

-sysDescr

В этой строке отображается состояние основных датчиков устройства: температура, состояние датчика сигнализации, состояние датчика наличия напряжения и состояние первого пользовательского датчика. Эти показания выводятся и без указания MIB файла, а также доступны из командной строки командой snmpwalk или командой snmpget с указателем sysdescr. Пример чтения дескриптора из командной строки:

snmpget -v1 -c public 192.168.15.20 sysdescr

-SysName

В этой строке отображается название устройства (до 20 символов, можно использовать кириллицу). Эти показания выводятся и без указания MIB файла, а также доступны из командной строки командой snmpwalk или командой snmpget с указателем sysname. Пример чтения из командной строки:

snmpget -v1 -c public 192.168.15.20 sysname При начальных настройках в этой строке также отображаются последние три цифры MAC адреса в десятичном исчислении.

-ipAddress

В этой строке отображается действительный IP адрес устройства. Его можно изменить. Этот адрес может быть прочитан и без указания MIB файла, а также доступен из командной строки командой snmpget с указателем (OID-ом) "1.3.6.1.4.1.40418.2.2.1.1". После изменения пользователем IP адреса, устройство перезагружается и может быть недоступно в течение нескольких секунд. Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.1 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.1 а xx.xx.xx.xx

где

- а - тип данных = IpAddress –xx.xx.xx.xx - желаемый адрес Ip.

-ipGatewayAddress

В этой строке отображается default gateway IP адрес устройства. Его можно изменить. Этот адрес может быть прочитан и без указания MIB файла, а также доступен из командной строки командой snmpget с указателем (OIDow) "1.3.6.1.4.1.40418.2.2.1.2". Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.2 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.2 а xx.xx.xx.xx

где

- а - тип данных IpAddress –xx.xx.xx.xx - желаемый адрес DGWIp.

-ipMonitoringDevice

В этой строке отображается Monitored IP адрес устройства. ПРИ УКАЗАНИИ значения, устройство начинает посылать ICMP запрос на указанный адрес с периодичностью в 16 секунд, при десяти не ответах на запрос, устройство перезагружает SNR_SMART, если он подключен, а также перезагружается само. Этот адрес может быть прочитан и без указания MIB файла, а также доступен из командной строки командой snmpget с указателем (OIDow) "1.3.6.1.4.1.40418.2.2.1.3". Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.3 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.3 a xx.xx.xx.xx

где

- а - тип данных = IpAddress

-xx.xx.xx.xx - желаемый адрес MonitoredIp.

-ipForTrap

В этой строке отображается IPForTrap адрес устройства. ПРИ УКАЗАНИИ значения и при возникновении соответствующего события -отсутствует напряжение на датчике напряжения,

-положительный сигнал на одном из пользовательских датчиков, -температура на датчиках температуры превысила 75 градусов цельсия.

устройство начинает посылать Trap на указанный адрес с переодичностью в 8 секунд. При сработке датчика «тревожный сенсор» устройство посылает 3 Trap'а на указанный адрес, при восстановлении в нормальное состояние 1 Trap.

Этот адрес может быть прочитан и без указания MIB файла, а также доступен из командной строки командой snmpget с

указателем (OIDom) "1.3.6.1.4.1.40418.2.2.1.4". Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.4 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.1.4 а xx.xx.xx.xx

где

- а тип данных = IpAddress –xx.xx.xx.xx – желаемый адрес IpForTrap.

-resetSmartContact6

С помощью этой строки можно перезагрузить SNR_SMART, если он подключен к устройству. Для этого в строке нужно выбрать вкладку «reset» и нажать кнопку «записать». При этом устройство перезагружает оборудование, подключенное к SNR_SMART. Для использования этой функции необходимо подключить управляющий провод от SNR_SMART (3) к десятиконтактному разъёму устройства к контактам №5 и №6. ВНИМАНИЕ: в SNR_SMART выключается только половина розеток, дальняя от сетевого кабеля (четыре розетки) на рисунке обозначены цифрой(1). Пример записи:

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.1 i 1 где

- і - тип данных в формате INTEGER

–1 - команда для перезагрузки SNR-SMART

-numberOfResetPositives

В этой строке отображается количество перезагрузок SMART-а. Количество можно сбросить через resetPositives. Этот адрес может быть прочитан и без указания MIB файла, а также доступен из командной строки командой snmpget с указателем (OIDom) 1.3.6.1.4.1.40418.2.2.2.2". Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.2 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.2 i

0

где

- і - тип данных в формате INTEGER –0 - команда для сброса счётчика.

-remoteControlContact8

В этой строке указывается состояние переключателя пользовательской нагрузкой, и действие её схоже с функцией перезагрузки SNR-SMART.

Рассмотрим, для примера, один из возможных вариантов работы функции: Управление вентиляторной полкой SNR-FB-FAN2-800.

Рисунок 7 – Внешний вид вентилятороной полки SNR-FB-FAN2-800

У этой функции предусмотренно два режима: ручной и автоматический режим термостата. В ручном режиме выход работает как триггер — меняет свое состояние на противоположное при подаче управляющей команды, пользователь самостоятельно изменяет состояние переключателя.После включения питания устройства выход не активен. В автоматическом режиме пользователь не может повлиять на состояние переключателя, устройство, ориентируясь показаниями встроенного (либо дополнительного вынесенного) температурного датчика, осуществляет переключение нагрузки. По умолчанию при температуре 55 градусов Цельсия устройство включает блок розеток, тем самым осуществляя включение вытяжной вентиляции, при снижении температуры ниже 35 градусов Цельсия, устройство отключает подключенный блок розеток. Следует помнить, что в SMART-е по умолчанию, без подачи на него управляющего сигнала, розетки

включены, и отключаются при подаче напряжения на сигнальный провод. Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.3 в ответ придёт значение INTEGER состояния датчика:

0 - man_on /переключатель в ручном режиме, SMART включен/

1 - man_off /переключатель в ручном режиме, SMART выключен/

5 - auto_on /переключатель в автоматическом режиме термостата, SMART включен/

6 - auto_off /переключатель в автоматическом режиме термостата, SMART выключен/

Пример переключения блока розеток: в строке выбрать вкладку «switch» и нажать кнопку «записать». Переключатель изменит своё состояние на противоположное.

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.3 і 4 где 4 – команда переключить(switch).

Пример переключения в автоматический режим: в строке выбрать вкладку «termostat_set_ON» и нажать кнопку «записать». Пример для командной строки:

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.2.3 i 3 где - 3 – команда переключить(termostat_set_ON).

Для переключения в ручной режим:

-manual_set_ON - 2.

-monitorAlarmSignalContact3

В этой строке отображается состояние датчика сигнализации: a) doorlsOpen - Произошла сработка. При указанном ipForTrap

адресе, три раза посылается Trap с указанием этого события.

б) doorlsClose - Датчик включен, дверь закрыта.

в) sensorOff - Датчик отключен. А также служит для отключения датчика.

r) sensorOn - Служит для включения датчика сигнализации. Пример чтения в командной строке:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.1 в ответ придёт значение в формате INTEGER состояния датчика:

- 0 sensorOff;
- 1 doorlsClose;
- 2 doorlsOpen;
- 3 sensorOn.

Пример отключения датчика сигнализации: в строке выбрать вкладку «sensorOff» и нажать кнопку «записать».

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.1 i 0

-numberOfAlarmPositives

В этой строке отображается количество сработок (открываний двери) датчика сигнализации. Это значение можно сбросить при помощи вкладки resetPositives. Этот адрес может быть прочитан и без указания МІВ файла, а также доступен из командной строки командой snmpget с указателем (OIDom) "1.3.6.1.4.1.40418.2.2.3.2". Примеры:

чтение snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.2 запись snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.2 i

0

где

- і - тип данных в формате INTEGER 0 - команда для сброса счётчика.

-monitorAnySensorSignal1contact4

В этой строке отображается состояние первого пользовательского датчика

a) sensor_1 - Датчик включен, на датчике присутствует положительный потенциал (по умолчанию). При указанном ipForTrap адресе, посылается Trap с указанием на это событие.

б) sensor_0 - Датчик включен, на датчике присутствует отрицательный потенциал.

в) sensorOff - Служит для отключения датчика, а также указывает, что датчик отключен.

r) sensorOn - Служит для включения пользовательского датчика. Примеры:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.3 в ответ придёт значение в формате INTEGER состояния датчика:

0 - sensorOff;

- 1 sensorls_0;
- 2 sensorls_1;
- 3 sensorOn.

Пример записи команды отключения датчика: в строке выбрать вкладку «sensorOff» и нажать кнопку «записать».

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.3 i 0

-monitorAnySensorSignal2contact7

В этой строке отображается состояние второго пользовательского датчика

a) sensor_1 - Датчик включен, на датчике присутствует положительный потенциал (по умолчанию).

б) sensor_0 - Датчик включен, на датчике присутствует отрицательный потенциал.

в) sensorOff - Служит для отключения датчика, а также указывает, что датчик отключен.

r) sensorOn - Служит для включения пользовательского датчика. Примеры:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.4 в ответ придёт значение в формате INTEGER состояния датчика:

- 0 sensorOff;
- 1 sensorls_0;
- 2 sensorls_1;
- 3 sensorOn.

Пример записи команды отключения датчика:в строке выбрать вкладку «sensorOff» и нажать кнопку «записать».

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.4 i 0

-monitorAnySensorSignal3contact9

В этой строке отображается состояние третьего пользовательского датчика

a) sensor_1 - Датчик включен, на датчике присутствуетположительный потенциал (по умолчанию).

б) sensor_0 - Датчик включен, на датчике присутствуетотрицательный потенциал.

в) sensorOff - Служит для отключения датчика, а такжеуказывает, что датчик отключен.

r) sensorOn - Служит для включения пользовательского датчика. Примеры:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.5 в ответ придёт значение в формате INTEGER состояния датчика:

0 - sensorOff;

- 1 sensorls_0;
- 2 sensorls_1;
- 3 sensorOn.

пример записи команды отключения датчика: в строке выбрать вкладку «sensorOff» и нажать кнопку «записать».

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.5 i 0

-monitorVoltageSignal

В этой строке отображается состояние датчика наличия напряжения: a) voltageIsNo - Датчик включен, напряжение отсутствует. При указанном ipForTrap adpece, посылается Trap с указанием этого события. б) voltageIsYes - Датчик включен, напряжение присутствует.

в) sensorOff - Служит для отключения датчика, а также указывает, что датчик отключен.

г) sensorOn - Служит для включения датчика напряжения. Примеры:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.6 в ответ придёт значение в формате INTEGER состояния датчика:

- 0 sensorOff;
- 1 voltagelsNo;
- 2 voltagelsYes;
- 3 sensorOn.

пример записи команды включения датчика: в строке выбрать вкладку «sensorOn» и нажать кнопку «записать».

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.3.6 i 3

-temperatureSensor

В этой строке отображается состояние температуры. Датчик установлен на устройстве. Диапазон отображаемой температуры от -55 до +128 градусов Цельсия, с точностью в один градус. При повышении температуры выше 75 градусов Цельсия и при указанном ipForTrap адресе, посылается Trap. Пример:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.4.1 в ответ придёт значение в формате INTEGER состояния датчика.

-voltageSensorContact10

В этой строке отображается напряжение, приложенное между контактом 10(+) и контактом 1(-) десятиконтактного разъёма, от 0 до 70 вольт с точностью до сотых долей вольта. Значение 100 соответствует 1.00В. Пример:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.4.2 в ответ придёт значение в формате INTEGER состояния датчика.

-sysVoltageAlarm

В этой строке записывается желаемое значение напряжения в отслеживаемой сети, при котором устройство SNR-ERD отсылает SNMP Trap "LOW Charge". При значении 1В следует записывать 100, при 10,5В — 1050 и тд.

-communityString

В этой строке отображается пароль (community) для работы с устройством. По умолчанию – public. В этой строке пароль можно изменить, максимальная длина 9 символов.

ВНИМАНИЕ: пароли(community) для чтения(snmpget) и записи(snmpset) параметров устройства должны быть одинаковыми. Примеры:

snmpget -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.5.1 в ответ придёт значение в формате STRING.

snmpset -v1 -c public 192.168.15.20 1.3.6.1.4.1.40418.2.2.5.1 s

где

— s — тип данных — STRING

- ххххххххх — желаемый пароль.

Для мониторинга измерений и состояния датчиков так же хорошо подходит программа <u>Gerda</u>, которая позволяет:

- вести опрос устройств по SNMP протоколу
- выводить показания в трей рабочего стола
- получать Trap сообщения

– отображать всплывающие сообщения при получении Trap сообщений

– отправлять e-mail сообщения при получении Trap сообщений

– производить перезагрузку SMART'ов

Название	Значение	В трее	
4 "EPD 20 1-014-169"	Sharenne	b ipee	resetSmartContact
= EKD-2.0_1:014:108	concorOff		
си нализация	sensoron 1		remoteControlContact
пользовательский датчика	sensorOff		
пользовательский датчика	sensorun		Очистить трапы
пользовательский датчико	veltageIcNe		
датчик наличия напряжения	22		
Температура	0		
напряжение	0		
EKD-3.0_1:014:179	deertcOnen		новое устроиство
сигнализацият	consopen		Тип
си нализация2	sensorOff		ERD 2.0
пользовательский датчика	sensorOff		
пользовательский датчика	sensorOff		ERD 3.0
пользовательский датчико	voltageIcNo		IP Адрес
датчик наличия напряжения	voltageIsNo		
датчик наличия напряжения2	25		
температурат	23		Добавить
температураг	0		
напряжение:	0		
напряжениег	0		Удалить
Carda	A X		
Gerda	10		

Рисунок 8 – Окно программы Gerda

Обсуждение программы на форуме.

6. Управление через WEB интерфейс

Помимо SNMP интерфейса, в устройстве имеется WEB страничка. На ней представлена общая информация и показания основных датчиков (рис. 9).

SNR shop nag ru	Ethernet Remote Device-2.0		
<u>Main</u>	SysName	ERD-2.0_14:168	
<u>Sensor Statistic</u>	Firmware	6.0	
Switch Option	Temperature	27' C	
<u>IP Config</u>	voltage	00.00 V	
<u>Manual</u>	Counter of SMART1 reset	cs2	
Community	Counter of ERD resets	26	
<u>Shop</u> Support	Own IP (Ethernet)	192.168.1.191	

Рисунок 9 – Главная web страница

На странице Sensor Statistic (рис. 10) отображается состояние и осуществляется переключение датчика сигнализации, датчика наличия напряжения в сети питания и 3х пользовательских датчиков типа «сухой контакт».

SINR shop.nag.ru	Ethernet Re	mote Device	e- 2. 0	
Main	The door	sens_OFF	0	ON
<u>Sensor Statistic</u>	The voltage on se	ns <mark>NO</mark>	0	OFF
Switch Option	1st sensor	positive	\odot	OFF
IP Config	2nd sensor	sens_OFF	O	ON
	3rd sensor	sens_OFF	\odot	ON
<u>Manual</u> <u>Communit</u> y	Password		ар	ply
<u>Shop</u>				
Support				

Рисунок 10 – web страница Sensor Statistic

На страничке Switch Option (рис. 11) осуществляется перезагрузка оборудования посредством подключаемых блоков розеток SMART, настраивается режим работы для переключателя SMART'а (ручной режим, автоматический режим), верхний и нижний пороги температуры автоматического включения и выключения переключателя пользовательской нагрузки.

Shop , nag , RU	Ethernet Rem	ote Device-2	2.0
Main	SMART1 (n6)	© Reset	
<u>Sensor Statistic</u>	SMART2 (n8) Mode	Manual 💌	
<u>Switch Option</u>	SMART2(n8): Now is Or	n 🔘 Switch	
<u>IP Config</u>	Critical temperature	50	'c
<u>Manual</u>	Normal temperature	35	'c
Community	Password	1	apply
<u>Shop</u>	Fassword		apply
Support			

Рисунок 11 – web страница Switch Option

На странице IP Config (рис. 12) можно изменить персональные настройки:

-Собственный IP адрес устройства.

-Default Gateway IP адрес.

-Monitored IP адрес устройства.

ПРИ УКАЗАНИИ значения, устройство начинает посылать ICMP запрос на указанный адрес с периодичностью в раз 16 секунд, при десяти неответах на запрос, устройство перезагружает SNR_SMART, если он подключен, а также перезагружается само.

–IP адрес, на который при возникновении соответствующего события устройство начинает посылать SNMP Trap'ы.

-Желаемый пароль для работы с устройством,

-Действительный пароль для работы с устройством.

Так же на этой странице указаны МАС адреса.

SNR shop.nag.ru	Ethernet	Remote I	Device-2.0
<u>Main</u>	Own IP	192.168.1.191	4e:41:47:1:e:a8
<u>Sensor Statistic</u>	Gateway	192.168.1.1	0:13:c4:b7:af:60
Switch Option	MonitoredHostIP	0.0.0.0	0:0:0:0:0:0
IP Config	IP for Trap	87.224.177.45	0:13:c4:b7:af:60
<u>Manual</u>	New password		
<u>Community</u> <u>Shop</u>	Password		apply
Support			

Рисунок 12 – web страница IP Config

Запись значений производится с указанием пароля в поле Password.

7. Подключение датчиков

Тревожный сенсор

Для использования функций "тревожный сенсор" провод от датчика сигнализаций нужно подключить к десятиконтактному разъёму в контакт № 3. При использовании нормально-разомкнутого (замкнут при закрытой двери) герконового датчика, в качестве датчика сигнализации, второй контакт геркона должен быть подключен к десятиконтактному разъёму, в контакт № 1.

При использовании конечника используется тот же принцип, конечник так же должен быть нормально-разомкнутый и при закрытой двери быть замкнутым, тем самым замыкать в цепочку контакты №1 (для второго датчика контакт № 6) одиннадцатиконтактного разъёма и №3 на десятиконтактном разъёме.

При использовании датчика удара, например от автомобильной сигнализации, сигнальный провод подключается к контакту №3, провод питания к контакту №5, а общий провод к контакту №1. ВНИМАНИЕ может потребоваться подключение внешнего источника питания, тестировалось только на двухуровневом датчике удара от автомобильной сигнализации Star line. При питании датчика удара от устройства, для нормальной его работы, может потребоваться подключение источника питания рассчитанного на нагрузку до 2х ампер.

При подключении любого устройства сигнализации, монтажник должен учитывать, что на контакте №3 присутствует сигнал логической единицы, а сработка происходит ТОЛЬКО ПРИ НАРАСТАЮЩЕМ ФРОНТЕ сигнала с логического ноля на логическую единицу.

Пользовательский сенсор

Один провод от пользовательского датчика подключается к одному из контактов №4,№7,№9, а второй к №1. В качестве датчика могут использоваться контакты реле, конечного выключателя, оптореле, геркона и т.п.

При подключении какого либо пользовательского датчика монтажник должен учитывать, что на контактах №4,№7,№9 присутствует сигнал логической единицы, и в программе это состояние читается как sensor_is_1 или цифра «2» в командной строке. А при замыкании контактов №4,№7,№9 с контактом №1 состояние на входе меняется на противоположное и читается как sensor_is_0 или цифра «1» в командной строке.

Датчик протечки воды:

Один провод датчика подключается к контакту №2, а второй к одному из контактов №4,№7,№9 десятиконтактного разъёма. Так же необходимо подключить нагрузочное сопротивление (4k7) к контакту №1 и ко второму контакту датчика.

8. Описание устройства SNR_SMART

В SNR_SMART используется реле TR91-5VDC. Рабочее напряжение 5 вольт. Напряжение нагрузки 250VAC и с током нагрузки до 30 А.

Четыре (в зависимости от версии) розетки SNR_SMART подключены к нормально замкнутым контактам реле. Во время перезагрузки на управляющие контакты реле подаётся напряжение, реле срабатывает и отключает контакты нагрузки, тем самым отключая розетки на SNR_SMART.

Рисунок 13 – Внешний вид SNR-SMART – «Блок розеток 19, 1U, 8шт., 220V»

- 1) Переключаемый (управляемый) блок розеток.
- 2) Непереключаемый блок розеток.
- 3) Сигнальный (управляющий) провод.

Для получения консультаций технических специалистов обращайтесь в техподдержку — e-mail: <u>erd@nag.ru</u>