

Workshop

Спикер: Афанасий Белюшин **Помощник:** Рамиль Ашарапов

НЕФОРМАЛЬНОЕ ОБЩЕНИЕ С ЭКСПЕРТАМИ ОТРАСЛИ

МНОГО ПРАКТИКИ, ОЧЕНЬ МНОГО ПРАКТИКИ

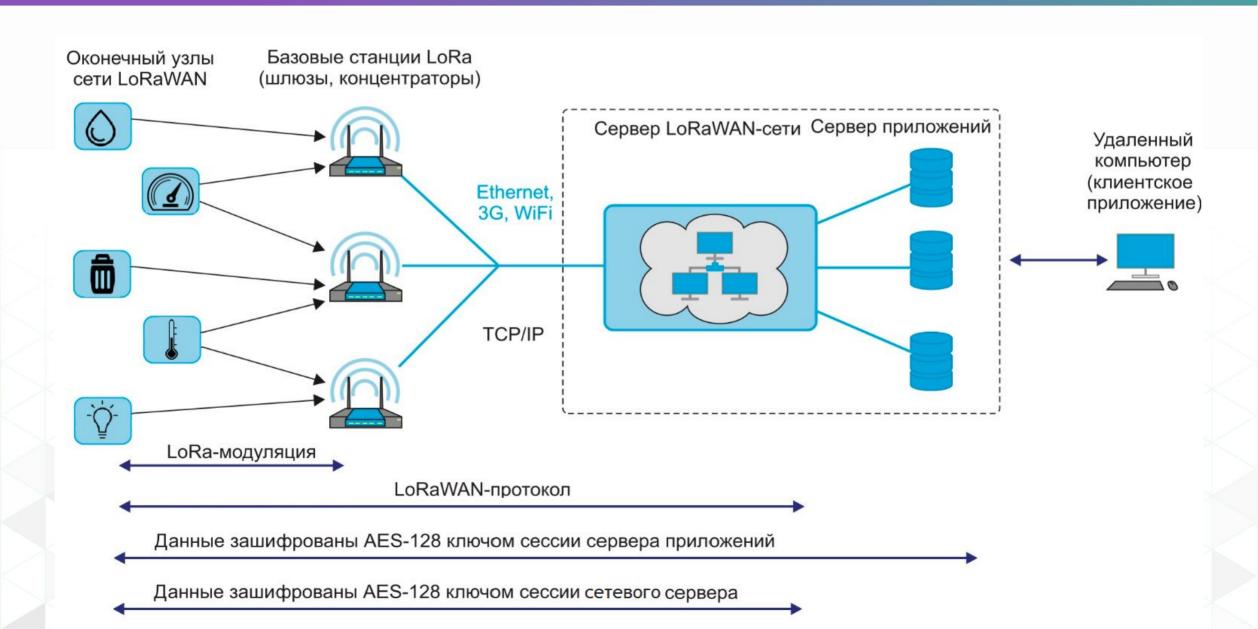
Содержание

Лекция

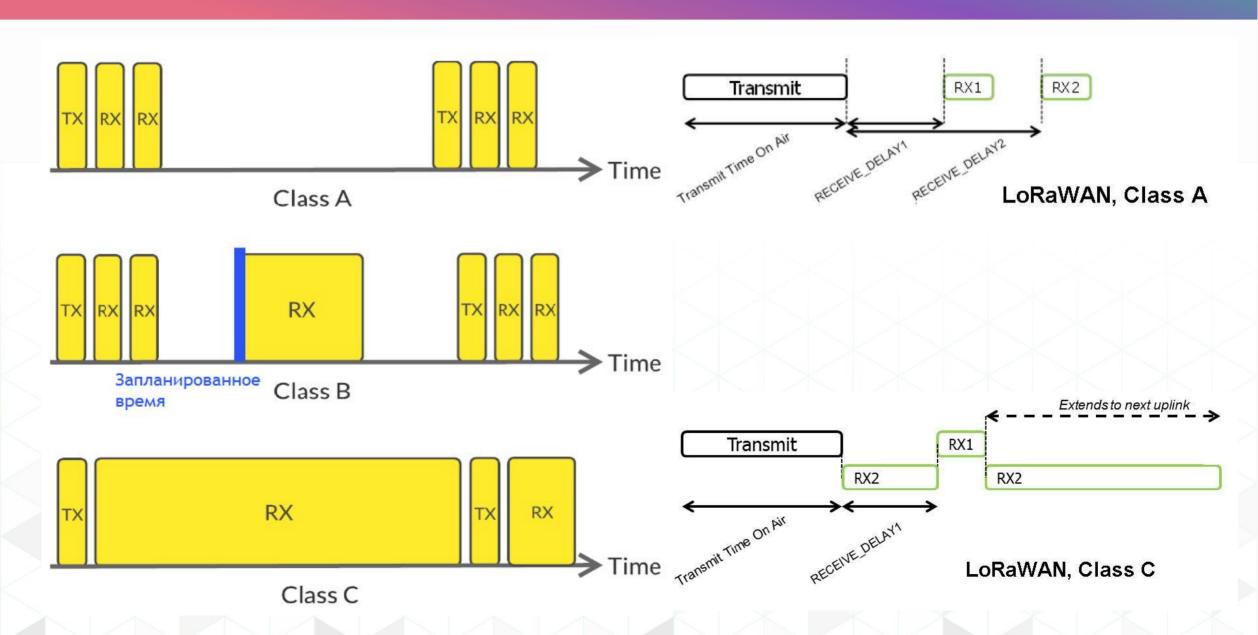
- О компании НАГ и нашей роли в LoRaWAN
- Знакомство с архитектурой технологии LoRaWAN
- Конечные узлы и их классы
- Активация устройств и безопасность в LoRaWAN
- Частотные планы, RU864

Практическая часть

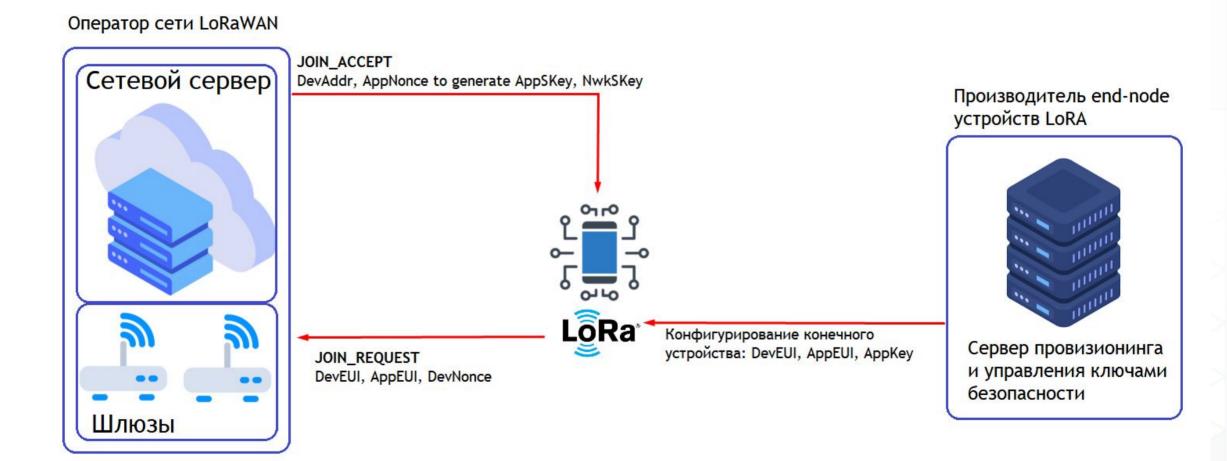
- Вега Абсолют
- AirBit
- Actility



О компании НАГ и нашей роли в LoRaWAN



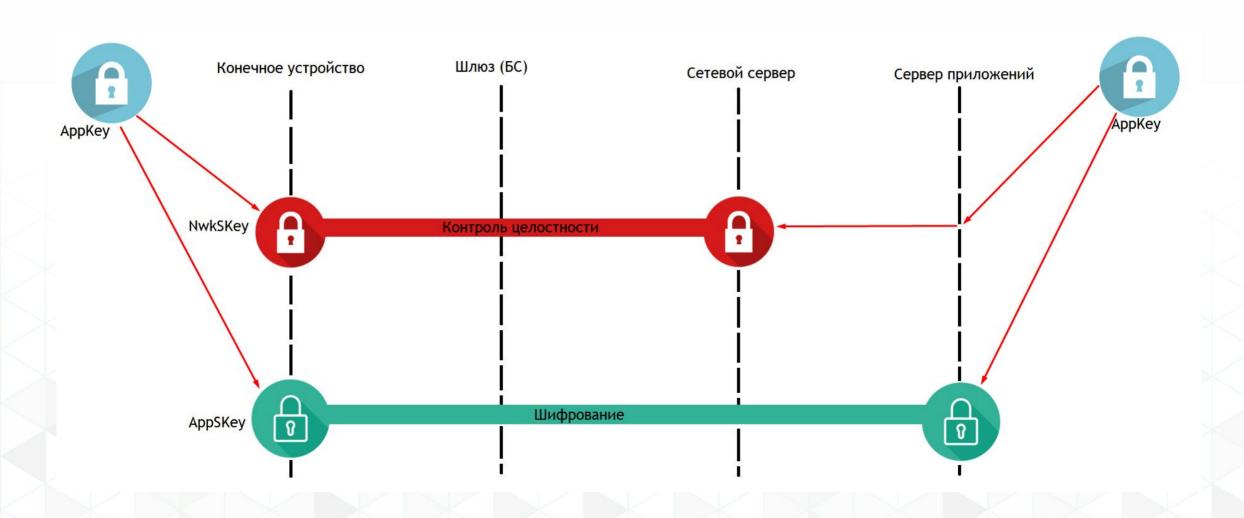
Знакомство с архитектурой технологии LoRaWAN



Конечные узлы и их классы

Основные термины LoRaWAN

Параметр	Назначение	Смысл
DevEUI (Device Extended Unique Identifier)	Уникальный идентификатор устройства. У каждого свой, не должен повторяться.	Ближайший аналог это МАС-адрес
AppEUI (Application Extended Unique Identifier)	Уникальный идентификатор сервера приложений	Обобщённо это "приветственная фраза" или логин для входа на сервер при первом соединении
AppKey (Application Key)	Ключ сервера.	Когда конечное устройство подключается к сети через беспроводную активацию (OAT), AppKey используется для получения ключей сеанса NwkSKey и AppSKey, специфичных для этого конечного устройства. Уникален для каждого конечного устройства
DevAddr (Device Address)	Уникальный адрес устройства в сети. Может повторяться в разных сетях	Ближайшая аналогия: "серый" ір-адрес в сетях
NwkSKey (Network Session Key)	Сессионный ключ сетевого сервера	Шифрует обмен пакетами между конечным устройством и сетевым сервером после активации первого
AppSKey (Application Session Key)	Сессионный ключ сервера приложений	Шифрует обмен пакетами между конечным устройством и сервером приложений после активации
MIC (Message Integrity Code)	Код целостности сообщения	Контрольная сумма сообщения


Активация по воздуху (ОТАА)

Состав пакета join_request:

Size (bytes)	8	8	2
Join Request	AppEUI	DevEUI	DevNonce

Состав пакета join_accept

Size (bytes)	3	3	4	1	1	(16) Optional
Join Accept	AppNonce	NetID	DevAddr	DLSettings	RxDelay	CFList

Частотные планы, SF

Возможные варианты ширины канала, SF и скорости

DataRate	Configuration	Indicative physical bit rate [bit/s]
0	LoRa: SF12 / 125 kHz	250
1	LoRa: SF11 / 125 kHz	440
2	LoRa: SF10 / 125 kHz	980
3	LoRa: SF9 / 125 kHz	1760
4	LoRa: SF8 / 125 kHz	3125
5	LoRa: SF7 / 125 kHz	5470
6	LoRa: SF7 / 250 kHz	11000
7	FSK: 50 kbps	50000

Частотные планы, "смутные" времена

EU868

Канал	Частота, МГц
Join1	868.1
Join2	868.3
Join3	868.5
4	867.1
5	867.3
6	867.5
7	867.7
8	867.9
RX2	869.525

Smartiko

Частота, МГц
864.1
864.3
864.5
864.64
864.78
868.78
868.95
869.12
864.92

Vega

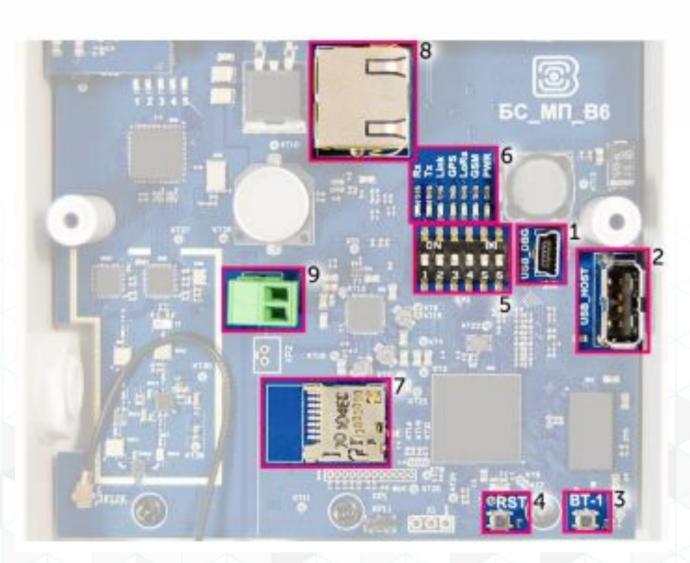
Канал	Частота, МГц
Join1	864.5
Join2	864.7
Join3	864.9
4	864.1
5	864.3
6	868.8
RX2	869.05

Частотные планы, RU864

Канал	Несущая	Модуляция	Максимальная ЭИМ	Ограничения
		Обязательные каналы		
0	868.9 MHz	MultiSF 125 kHz	100мВт	Рабочий цикл 10% или
1	869.1 MHz	MultiSF 125 kHz	100мВт	режим LBT
LoraSTD	864.6 MHz	SF7 250 kHz	25мВт	
FSK	864.8 MHz	FSK 250 kHz, 50kbps	25мВт	
RX2	869.1 MHz	SF12 125 kHz	25мВт	
		Дополнительные каналі	Ы	'
2	864.1 MHz	MultiSF 125 kHz	25мВт	Запрещается
3	864.3 MHz	MultiSF 125 kHz	25мВт	использование в пределах
4	864.5 MHz	MultiSF 125 kHz	25мВт	аэропортов (аэродромов)
5	864.7 MHz	MultiSF 125 kHz	25мВт	Рабочий цикл 0,1% или режим LBT
6	864.9 MHz	MultiSF 125 kHz	25мВт	
7	866.1 MHz	MultiSF 125 kHz	25мВт	
8	866.3 MHz	MultiSF 125 kHz	25мВт	
9	866.5 MHz	MultiSF 125 kHz	25мВт	
10	866.7 MHz	MultiSF 125 kHz	25мВт	Запрещается
11	866.9 MHz	MultiSF 125 kHz	25мВт	использование в пределах
12	867.1 MHz	MultiSF 125 kHz	25мВт	—— аэропортов (аэродромов) —— Рабочий цикл 1% или
13	867.3 MHz	MultiSF 125 kHz	25мВт	режим LBT
14	867.5 MHz	MultiSF 125 kHz	25мВт	
15	867.7 MHz	MultiSF 125 kHz	25мВт	
16	867.9 MHz	MultiSF 125 kHz	25мВт	

^{*} LBT (Listen Before Talk) - режим прослушивания перед излучением

Практическая часть.



Login: root

Password: temppwd

Расположение средств управления, индикации, входных и выходных интерфейсов

- 1. mini USB порт для подключения к компьютеру
- 2. USB хост для подключения внешних устройств
- 3. Запуск интерфейса BS-dashboard (опция)
- 4. Кнопка перезагрузки базовой станции
- 5. Сервисные DIP-переключатели
- 6. Группа индикатора функционирования различных систем
- 7. Разъем для micro SD-карты
- 8. Разъем для Ethernet-кабеля
- 9. Дополнительный разъем для питания (опция)

Разрешенные частоты на территории аэропорта

Канал	Несущая, МГц	Модуляция	Диапазон частот, МГц	Максимальная ЭИМ
1	868,78		868,7175 - 868,8425	
2	868,95	MultiSF 125 кГц	868,8875 - 869,0125	25мВт
3	869,12		869,0575 - 869,1825	

Настройка по SSH

Команда	Действие
wget http://data.nag.ru/LoRaWAN/Academy/RU868_global_conf _airport.json	Скачиваем конфигурацию с настроенным частотным планом
rm LoRa/packet_forwarder/lora_pkt_fwd/global_conf.json	Удаляем старую конфигурацию с БС
<pre>cp RU868_global_conf_airport.json LoRa/packet_forwarder/lora_pkt_fwd/global_conf.json</pre>	Перемещаем новый конфиг в нужную директорию
nano LoRa/packet_forwarder/lora_pkt_fwd/global_conf.json	Заходим в конфигурацию
/etc/init.d/lora_watchdog stop	Выключаем вотчдог
/etc/init.d/lora_watchdog start	Включаем вотчдог
reboot	Перезагружаем БС

IoT Vega Server

Ссылки для скачивания:

IoT Vega Server

Руководство по эксплуатации

Vega LoRaWAN Configurator

Расшифровка полученных данных от оконечных устройств

Описание пакета с текущими показаниями

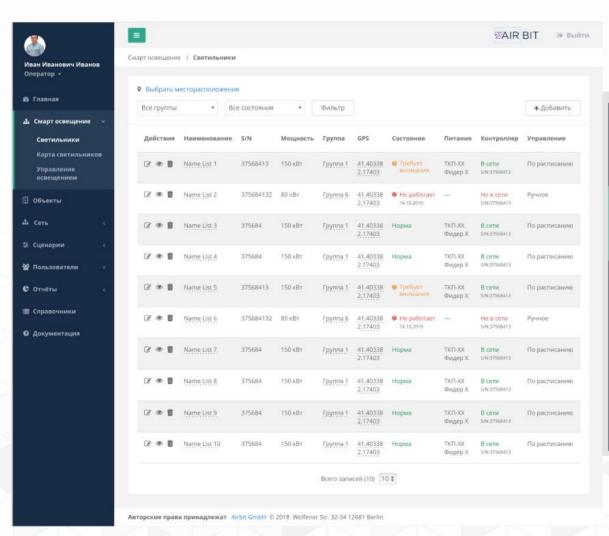
<u>Скачать</u> <u>руководство по</u> <u>эксплуатации</u>

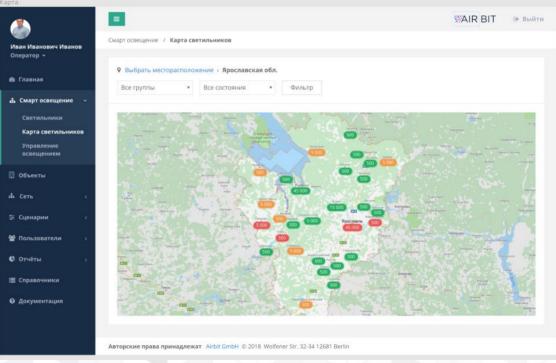
Размер в байтах	Описание поля	Тип данных
1 байт	Тип пакета, для данного пакета ==1	unix8
1 байт	Заряд батареи, %	unix8
1 байт	Превышение лимитов ("0" - нет превышения, "1" - есть превышение)	unix8
4 байта	Время снятия показаний, передаваемых в данном пакете (unixtime UTC)	unix32
2 байта	Температура в °С, умноженная на 10	Int16
1 байт	Нижний температурный лимит	Int8
1 байт	Верхний температурный лимит	Int8
1 байт	Причина передачи пакета	unix8
1 байт	Состояние входов (битовое поле)	unix8

IoT Vega Pulse

Ссылки для скачивания:

IoT Vega Pulse

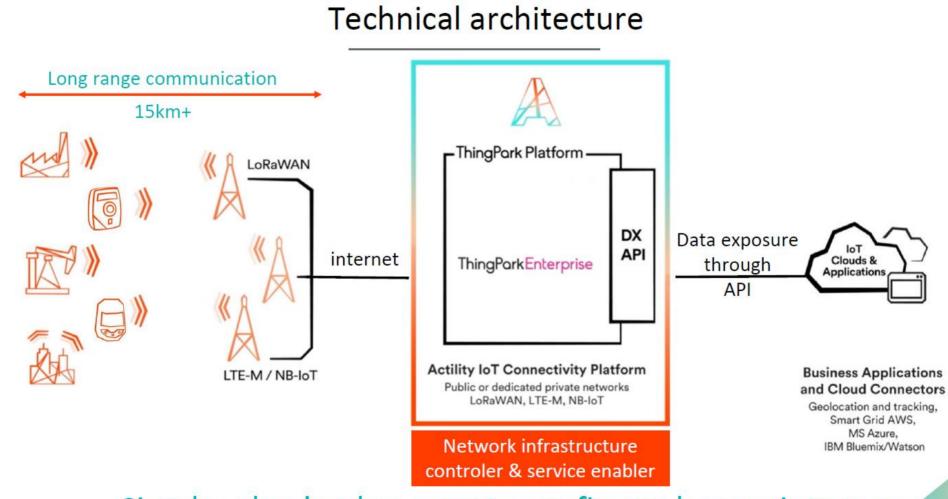



Ссылки:

lns.nag.ru

IP сервера: 91.213.39.14:8001

Управление освещением



Actility Connecting with intelligence

ThingPark Enterprise

Actility Simple, plug 'n play, easy to configure, low maintenance

Проведение практикума:

Афанасий Белюшин Инженер ОАИМ

Проведение практикума:

Ашарапов Рамиль Инженер ОАИМ

Спасибо за внимание!

