
Junos® Fundamentals Series

Discover Junos revelations for

easier, faster, higher-performance

connectivity in this compendium

of tips, tricks, and techniques

gleaned from the Juniper Networks

user community.

Edited by: Jonathan Looney, Harry Reynolds, and Tom Van Meter

DAY ONE: JUNOS TIPS, TECHNIQUES,
AND TEMPLATES 2011

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: JUNOS TIPS, TECHNIQUES,
AND TEMPLATES 2011

From its inception over a decade ago, the Junos operating system has had the network
operator in mind. Yet many operators use the CLI without appreciating the cool en-
hancements that have been made and refined over the years. It’s a feature list that is
forever growing and that ultimately makes operations easier, networks faster, and the
bottom line more efficient.

So Juniper Networks Books and J-Net joined forces and went to the Junos user com-
munity and asked them for their best and brightest Junos tips and techniques. Then it
commissioned three expert Junos engineers to act as the selection committe and add
color commentary. The result, published here for the first time, is not only a fantas-
tic collection of Junos solutions, but expert annotation and commentary that provides
helpful advice on when and how to deploy those solutions.

Here’s a Junos tips and tricks book that’s meant to be browsed with a terminal open to
your favorite Junos device so you can try each and every technique.

IT’S DAY ONE AND HERE ARE A FEW TIPS FOR YOU:
A tip is a one-step process.
A technique is a tip requiring several steps to complete.
A template is a process you can create and apply to different network scenarios.
This book was created via a selection process that reviewed over 300 submitted
tips by over 100 individuals on the J-Net community boards at forums.juniper.net.
There are no chapters in this book, but there might be groupings of tips, one after
the other, on similar topics.
The editors’ commentary appears in greyscale. The submitted, winning tips,
techiques, and templates appear in black.

“This book is a treasure chest of information for the Junos newbie and greybeard alike!”

 David Ward, Juniper Fellow

7100 1333

ISBN 978-1-936779-26-0

9 781936 779260

5 2 0 0 0

07500211

Day One: Junos Tips,
 Techniques,
 and Templates
 2011

Edited by: Jonathan Looney
 Harry Reynolds
 Tom Van Meter

© 2011 by Juniper Networks, Inc. All rights reserved.

Juniper Networks, the Juniper Networks logo, Junos,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. Junose is a trademark of Juniper Networks,
Inc. All other trademarks, service marks, registered
trademarks, or registered service marks are the property
of their respective owners.

Juniper Networks assumes no responsibility for any
inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise
this publication without notice. Products made or sold by
Juniper Networks or components thereof might be
covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706,
6,459,579, 6,493,347, 6,538,518, 6,538,899,
6,552,918, 6,567,902, 6,578,186, and 6,590,785.

Published by Juniper Networks Books
Technical Editors: Jonathan Looney, Harry Reynolds,
Tom Van Meter, Jared Gull
Editor in Chief: Patrick Ames
Copyediting and Proofing: Nancy Koerbel
Junos Product Manager: Cathy Gadecki
J-Net Community Management: Julie Wider

ISBN: 978-1-936779-26-0 (print)
ISBN: 978-1-936779-27-7 (ebook)

Version History: June 2011
 2 3 4 5 6 7 8 9 10 #7500211-en

This book is available in a variety of formats at:
www.juniper.net/dayone.

Send your suggestions, comments, and critiques by email
to dayone@juniper.net.

Follow the Day One series on Twitter: @Day1Junos

	 ii	

Forward

This book started out as a casual conversation, and by the time it was
done people were talking about it in the hallways of Juniper Networks.
That’s because it originated as a tips contest, hosted on J-Net, and now
that some have seen the early drafts, there’s talk of doing it every year.
Whether or not this becomes an annual affair depends on your ap-
proval of it on J-Net, so post comments at http://forums.juniper.net/.

As editor in chief I had some difficult choices to make about this unique
Day One book. The first was how to credit the original contributors.
Initially, I was going to list contributors after their tips, but this is a
community-generated book, so I ended up with a group contributor
page in an effort to thank everyone equally. No matter the length, or
the ah-ha factor, everyone listed took the time to contribute, so the
contributor with the one-liner got the same credit as the person who
contributed four-pages. I thought it was the fairest way to go.

Another tough decision was how to select, edit, and ultimately, anno-
tate the tips. Our editors – Jonathan, Harry, and Tom – talked this over
several times, and came up with a plan: many tips were brilliant but
needed a simple lead-in, while others needed clarification, editing, and
a useful cross-reference or two. So just about every tip got either an
introduction or a summary, and some tips inspired the editors to
embellish and accentuate the topic with their own advice and expertise.
And to make things clear to the reader, anywhere the hand of the
editors lands in this book is shown in greyscale.

Of course we had to go in and amend a few things, test the configura-
tions, change the occasional Juniper terminology no-no, and, yes,
rewrite sections that were obfuscated or unclear.

Finally, a judgment call had to be made about how the book was
arranged. What followed what? How to arrange the sequence of tips?
Sections? Parts? It was decided to group some similar tips and tech-
niques together but other than that to arrange them in no particular
sequence or order. Call it: The Joy of Browsing.

I must say it has been a delight to have the Junos community involved
in a book. I want to thank the program management of the original
contest by Cathy Gadecki, and the J-Net team, especially Julie Wider,
for sponsoring the contest and posting the results.

Patrick Ames, Editor in Chief, Juniper Networks Books

	 	 iii

	 iv	

Contributors

Thank you contributors for participating, and thank you for sharing
your experience and knowledge. The contributors to Day One: Junos
Tips, Techniques, and Templates 2011 are presented in no particular
order. Note that some preferred to keep their their J-Net handles for
anonymity. Many tips were anonymous, too.

Julian Eccli

Samuel Gay

Julien Goodwin

Michael A. Harrison

Paul Zugnoni

SSHSSH

Daniel Kharitonov

David Gao

Alasdair Keith

Taras Matselyukh

Phil Shafer

Gautam Kumar

Tim Eberhard

Mattia Petrucciani

Jaime A. Silva

Aidan Scheller

Emmanuel Gouriou

	 	 v

Jeff Sullivan

Mina S. Kirollos

Srijith Hariharan

Amita Gavirneni

Nwamo Ugochukwu

Barry Kalet

Jennifer Pulsifer

Manekar Umamaheshwararao

jtb

David Gao

Nils Swart

Romain Pillon

Carlos Isaza

Mike Willson

Jonathan Looney

Stefan Fouant

Thomas Schmidt

Ron Frederick

Mark D. Condry

Jared Gull

	 vi	

Editors	

Thank you, editors, for hanging in there and for the dozens of hours in
phone conference and for your many weekends spent reviewing and
editing. Also thanks to Jared Gull, who began as the fourth editor until
the day job got in the way.

Jonathan Looney

Jonathan has worked in the networking industry full-time for over a
decade. He is certified under the JNCIE progam, JNCIE-M No. 254 and
JNCIE-ER No. 2, as well as the CCIE program, CCIE No. 7797.
Jonathan served as the lead author for several training courses for
Juniper, including the popular Junos as a Second Language series. Prior
to joining Juniper, he performed network engineering for a large
enterprise, a regional ISP, and an application service provider (ASP).

Jonathan works in Juniper's Education Services department, supporting
the lab infrastructure and working on special projects. Jonathan enjoys
the freedom his job at Juniper gives him to both continually learn and to
share his knowledge with others through a wide range of media.

Jonathan worked as the lead technical editor for this book.

Harry Reynolds

Harry has over twenty-five years experience in the networking industry,
with the last fifteen years focused on LANs and LAN interconnection.
He is CCIE # 4977, and JNCIE # 3, and also holds various other
industry and teaching certifications. Harry was a contributing author to
Juniper Network Complete Reference (McGraw-Hill, 2002), and wrote
the JNCIE and JNCIP Study Guides (Sybex Books, 2003). As as
co-author he wrote Junos Enterprise Routing and Junos Enterprise
Switching (O’Reilly, 2007 and 2009 respectively). Prior to joining
Juniper, Harry served in the US Navy as an Avionics Technician, worked
for equipment manufacturer Micom Systems, and spent much time
developing and presenting hands-on technical training curriculums
targeted to both enterprise and service provider needs. Harry has
presented classes for organizations such as American Institute, Ameri-
can Research Group, Hill Associates, and Data Training Resources.

	 	 vii

Harry is currently employed by Juniper Networks, where he functions
as a senior test engineer performing customer specific testing. Harry
previously functioned as a test engineer in the core protocols group at
Juniper, as a consulting engineer on an aerospace routing contract, and
as a senior education services engineer, where he worked on courseware
and certification offerings.

Tom Van Meter

Tom has over twenty years experience in the telecommunications field.
He has a BS from the United States Military Academy with a Computer
Science concentration and a MS in Telecommunications and Computers
from The George Washington University. From 2000 until 2011 he was
an Adjunct Professor in the MS in Telecommunications Program at The
George Mason University. Tom holds CCIE # 1769, and is a multiple
JNCIE. Tom was a contributing author to Juniper Networks Routers:
The Complete Reference (McGraw-Hill, 2002) and JNCIA Study
Guide (Sybex Books, 2003). Tom spent 10 years on active duty in the
Army in a variety of different positions. After leaving the Army, he
attended graduate school. Upon completing graduate school, Tom
worked for Automation Research Systems and Chesapeake Computer
Consultants, Inc., as a Cisco Systems and Fore Systems technical trainer
and consultant, focusing on routing and ATM technologies.

Tom has been employed by Juniper Networks since September 2000.
He is the Systems Engineering Manager for the DoD SE team. Prior to
becoming SEM, he was an SE on the DoD SE team and a trainer and
certification proctor for Juniper Networks Education Services.

	 viii	 	

Table	of	Contents	

Tip: Pre-configure Interfaces 12

Tips: Managing Disk Space 12

Tip: Verifying BGP Routing Policy Behavior 14

Tip: Automatically Generate Output Timestamps While Running Commands 15

Tip: Use Operational Scripts 16

Tip: Using Remote Commit Scripts 17

Tip: Use Junos Automation to Send SNMP Trap When Event Occurs 17

Tip: Applying CoS in VPN 19

Tip: Finding a Range of Prefixes in the Routing Table 20

Tip: Viewing Additional Details About the Contents of a Configuration 21

Tip: Viewing Additional Details About a Commit 23

Template: All About Configuration Groups 24

Tip: Set Idle Timeout for Root User 33

Tip: Increase Terminal Screen Width 33

Tip: View All Routes Except Those from a Particular Protocol 34

Tip: Logging Policy Drops to a Specific Log File 35

Tip: Troubleshooting Connectivity on the SRX 35

Tip: Debugging Screens on the SRX 37

Tip: Understand Filter Behavior and GRE Packet Flow 37

Template: Using the Interface Range Command 38

Tip: Commit Previous Configuration and Software Package 43

Technique: Automatically Allow Configured BGP Peers in a Loopback Firewall Filter 48

Tip: Accessing Online Help 50

Tip: SNMP OIDs for SRX Monitoring 51

Tip: Monitoring Router Alarm LEDs and Controls (craft-interface) 52

Tip : Why is My Junos Device Alarm LED Status Red? 53

Template: Pipe Commands 54

Tip: Show Version and Haiku 61

Tip: CLI History Search 62

Tip: Unable to Access a Standby SRX? 62

Tip: How to Chat Inside a Router Telnet Session with a Connected User 63

Tip: Loading a Junos Factory Default Configuration 64

Tip: Restart a Software Process 65

Tip: Remote Wireshark Analysis 66

Tip: Remote Wireshark/TShark Analysis Via SSH 67

Tip: Emacs Shortcuts 70

Template: 97 CLI Tips 70

	 		 ix

Technique: Port Mirroring on EX Switches 76

Technique: Remote Port-mirroring to a UNIX Host 78

Tip: Use “.x” Instead of “unit x” in Set Commands 82

Tip: Junos MOTD Before/After Login 82

Tip: Create a New Login Class and Add Users to It 83

Tip: J-series and SRX HA Cluster Status Information 84

Tip: Commit Confirm on a Clustered SRX 84

Tip: Change Interfaces 85

Tip: Wildcard Delete 87

Tip: Searching a Large Configuration 88

Tip: Make Sure You Haven’t Downloaded a Corrupted Junos Image 89

Techniques: Junos Boot Devices and Password Recovery 90

Technique: Replace a Missing Boot Device 93

Tip: Hide Pieces of the Configuration 96

Tip: How to View Built-in Configuration 97

Tip: Preventing Other Users From Editing a Configuration While You're Still Configuring 98

Tip: Logout a Connected User 99

Technique: Automatic Junos Configuration Backup 99

Tip: Quickly Synchronize System to NTP Server 100

Tip: Firewall Support for NTP Status 101

Tip: Configuration Loading on a Router from the Output of Show 102

Tip: Junos Display Set 103

Tip: Configure a Basic Firewall on SRX 104

Technique: SRX CLI Management Plane Traffic (Telnet/SSH) Timeout Settings 104

Tip: Layer 3 VPN Dynamic GRE 106

Tip: Fixing Corrupted (Failed) Junos EX or SRX Software Using USB Port 106

Tip: Interpreting Syslog Messages 107

Tip: Send Syslog Messages with Different Facility Codes to the Same Syslog Host 108

Tip: VRRP Fast Failover 109

Tip: Copying Files Between SRX Clusters 110

Tip: Connecting to the Secondary Node from the Primary Node on an SRX Cluster 110

Tip: Gracefully Shutdown Junos Software Before Removing Power 110

Tip: Connect Another Device Using Auxiliary Port 111

Tip: Checking a Link Status Using Port Descriptions 112

Technique: Monitor Interesting Commands Executed by Others in Real-time 113

Tip: Suspend and Resume Trace File Monitoring 114

Tip: Combine Match with Junos Syslog Capabilities 115

Tip: Static Host Mapping 115

Tip: Viewing Core Files 116

Additional Resources 118

	 x	 	

Conventions	Used	in	This	Book

A tip, or the beginning of a technique, is indicated with the thumbs-up
icon for easy legibility, as shown here:

C	This is the start of the original tip or technique.

A tip is a one-step process.

A technique is a tip requiring several steps to complete.

A template is a process you can create and apply to different network
scenarios, or it’s a collection of tips and techniques that we glued
together.

There are no chapters in this book, but there might be groupings of
tips, one after the other, on similar topics.

The most recent tip or technique or template appears on the recto
(right hand) running head in printed books and on PDF pages. (eBook
production has yet to reach a stage for recto and verso pages.)

Congfiguration code or output can be wide or short. When it’s wide,
the typesetter is trying to get the line not to break. When it’s short, it
just happens to fit into the body text margins:

like this, or:

like this, because the line length is so long, especially for some junos device output.

When one of the editors writes commentary, their voice appears in
greyscale like this. They tend to ramble a bit, so entire paragraphs may
be in greyscale. When they supply code or output it is in greyscale:

like this, or:

like this, if it's one of the editors inserting output or configurations into the tip.

ALERT! In fact, any book element that is in greyscale depicts one of the three
editors writing commentary.

Day One: Junos Tips,
 Techniques,
 and Templates
 2011

	 12	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Pre-configure Interfaces

C	Sometimes it’s helpful to have the appropriate configuration already in
place before you actually install hardware – so configure dummy
interfaces when preparing for maintenance, or anytime when new
interfaces or hardware need to be installed.

As this tip states, you can usually configure any valid interface on a
platform whether or not the interface is actually installed in the device
when you commit the changes. The configuration is ignored until the
interface is installed. Once the interface is available, Junos recognizes
it and begins to use the configuration.

Closely related to this is the ability to make configuration changes, but
deactivate them prior to committing. This allows you to do most of
the configuration work necessary for a change, while waiting to
actually activate the configuration changes until an appropriate time
(such as a maintenance window). In the meantime, you (or others) can
continue to commit additional changes to the configuration. Assum-
ing you deactivated the configuration you are pre-staging, Junos will
not apply the new configuration until you activate it.

Tips: Managing Disk Space

C	1. Use this operational-mode CLI command to have Junos attempt to
automatically delete old files:

> request system storage cleanup

Sometimes it helps to run this command twice.

2. If you are not interested in rolling back to a previous image, you can
delete the backup Junos image with this command:

> request system software delete-backup

If the installation of a new image fails, simply re-install the old image
rather than use the software rollback function.

3. When installing a new Junos image, you can delete the image file as
part of the installation by adding the unlink option to the command.
For example:

	 Tips:	Managing	Disk	Space	 13

> request system software add /var/tmp/junosimage.tgz unlink

4. When installing a new Junos image, you can also prevent the
installation process from making a backup copy of the image with the
no-copy option. For example:

> request system software add /var/tmp/junosimage.tgz no-copy

You can regularly use the unlink and no-copy command options, as
there is usually no need to keep the installation file after the new
image has been installed.

Incidentally, if you don’t have enough room to download the installa-
tion image to the local file system, installing directly from an FTP
server (rather than first copying the image locally) probably won’t
help. The image is still completely downloaded before installation
begins.

Also, remember that the Junos operating system divides your storage
into multiple partitions. You can use the operational-mode show
system storage command to show the free space available in each par-
tition. (In the output, the directory where the partition is mounted is
listed on the far-right and the free space is listed in the middle.) If you
can find a partition with enough free space to hold the image, you can
download it to that partition.

If all of this doesn’t work, you can also go looking for large files using
the Unix shell. Use the operational-mode CLI command start shell
to access a Unix shell. Then, use the du command to find the largest
directories/files. Start with du -sh /*. (On some platforms, you may
actually need to start with du -sh /cf/*.) This lists the top-level
directories or files and their sizes. You can then use the du command
to see the size of each sub-directory within a directory, recursively
inspecting directories as far as you desire. (For example, du -sh /
var/* will display the size of each sub-directory or file in /var. du -sh /
var/tmp/* will display the size of each sub-directory or file within /var/
tmp.) As you examine the results of du, you should either find large
files that can be deleted or find that everything looks normal. If
everything is ‘normal’ and you are running out of disk space, it’s
probably time to upgrade your compact flash!

	 14	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Verifying BGP Routing Policy Behavior

Routing policy can have a direct impact on what routes are advertised
or accepted from BGP peers, as well as how the attributes attached to
those routes are altered as they either leave or enter the routing table,
respectively. If you want to confirm what is sent or received from a
specific BGP peer, then this tip is for you.

C	Use the show route receive-protocol bgp <neighbor IP> command to
determine which routes the local router is receiving from the designat-
ed BGP neighbor. Note that the command displays the routes received
from the neighbor before those routes are populated into the routing
table (therefore, before policy takes effect.) To view how policy
impacts the route as it’s placed into the routing table, issue the show
route <prefix> command.

Conversely, use the show route advertising-protocol bgp <neighbor
IP> command to determine which routes the local router is sending to
the designated BGP neighbor.

Don’t forget to combine CLI matching when you only care about
certain prefix ranges, as shown here, because we all know that BGP
route updates can be pretty long:

{master}
regress@mse-a> show route advertising-protocol bgp 192.168.1.1

vrf_1.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* 23.23.1.0/30 Self 100 I
* 33.33.1.2/32 Self 100 I

{master}
regress@mse-a> show route advertising-protocol bgp 192.168.1.1 23.23.1.0/30 detail

vrf_1.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
* 23.23.1.0/30 (1 entry, 1 announced)
 BGP group internal type Internal
 Route Distinguisher: 65056:1
 VPN Label: 16
 Nexthop: Self
 Flags: Nexthop Change
 Localpref: 100
 AS path: [65056] I
 Communities: target:65056:

	 Tip:	Automatically	Generate	Output	Timestamps	While	Running	Commands		 15

The command does not return any error if a non-existent peer is
specified, so do make sure the related peer address is correct when no
results are shown. Also, the same form of this command can be used
on RIP, but there is no equivalent for Link State protocols like OSPF
or ISIS because these protocols do not send routes directly, instead,
they send link-state database updates.

Tip: Automatically Generate Output Timestamps While Running
Commands

It’s worthwhile to delineate actions in your capture files when trouble-
shooting, and one way to delineate actions is to enable timestamps.
Timestamps not only identify the difference between router output
and user-entered commands, they also help later when you go back
and review a file. With the timestamp enabled, you can determine if
you captured a file all at once or if the file is an aggregation of outputs
you took over a period of time. This command helps JTAC or others
involved with replicating an issue because it makes it easy to keep
track of the event timeline.

C	Without timestamp enabled your output might look like this:

lab@M7i-R106> show configuration interfaces fxp0
unit 0 {
 family inet {
 address 172.25.46.106/24;
 }
}

So, for this tip, from operational mode, run the set cli timestamp
command:

lab@M7i-R106> set cli timestamp
May 04 18:26:54
CLI timestamp set to: %b %d %T

And with timestamp enabled, our output looks like this:

lab@M7i-R106> show configuration interfaces fxp0
May 04 18:27:05
unit 0 {
 family inet {
 address 172.25.46.106/24;
 }
}

	 16	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

You can see that following this timestamp command, Junos displays
the current date/time after each command that’s run. To disable the
feature use the set cli timestamp disable command:

lab@M7i-R106> set cli timestamp disable
CLI timestamp disabled

Note that you really need to ensure you have a valid system time. So
use the show system uptime command to determine system time and
date, then use the set date command to change the time and date, if
necessary. First the show system uptime command:

lab@M7i-R106> show system uptime
Current time: 2011-05-04 18:17:52 UTC <-- current time
System booted: 2011-05-03 20:08:32 UTC (22:09:20 ago)
Protocols started: 2011-05-03 20:10:58 UTC (22:06:54 ago)
Last configured: 2011-03-22 22:10:49 UTC (6w0d 20:07 ago) by lab
 6:17PM up 22:09, 1 user, load averages: 0.04, 0.05, 0.02

Now use the set date command to change the time. This command
provides you with two completions to either specify the date and time,
or to use an NTP server to specify the date and time, as shown here
using the help prompt:

lab@M7i-R106> set date ?
Possible completions:
 <time> New date and time (YYYYMMDDhhmm.ss)
 ntp Set system date and time using Network Time
Protocol servers

Note that if you identify an NTP option, you must provide a valid
NTP server address and if you don’t, as shown here, it doesn’t work.
Additional NTP tips are located in Tip: Quickly Synchronize System
to the NTP Server.

lab@M7i-R106> set date ntp 1.1.1.1
 4 May 18:21:28 ntpdate[1776]: no server suitable for
synchronization found <-- Error message.

Tip: Use Operational Scripts

This is the first of three tips on Junos Automation, a powerful toolset
that lets you change the behavior of Junos to match your network’s
needs. There’s one tip from each of three main areas: Operation (“op”)
scripts, Commit scripts, and Event scripts.

	 Tip:	Using	Remote	Commit	Scripts	 17

C	You can write your own operation script (op script) to get the output
of the show commands in clean format based on the required columns/
rows.

This tip, of course, gives only one small example of what you can do
with Operation scripts. For example, you could write a script to try
troubleshooting a remote network that is down. You could have the
script ping the network’s CPE device, examine the routing table, look
for errors on the interface, and even try disabling and re-enabling the
interface.

MORE? Look in the Day One book library for any of the several Junos Auto-
mation books: www.juniper.net/dayone. Also there’s a Juniper script
library with example scripts available at no charge: http://www.
juniper.net/us/en/community/junos/script-automation/#overview.

Tip: Using Remote Commit Scripts

This tip describes one way to ease management of Commit Scripts.
Commit scripts examine the candidate configuration and take
specified actions based on that configuration. Among other things, a
script can issue a warning, issue an error (which will abort the commit
process), make automatic changes to the configuration to correct an
error, and interpret and silently expand your custom syntax. Commit
scripts are powerful tools for controlling your Junos configurations.

C	If you need to load the same commit script on many devices, you can
use remote commit scripts so that all the devices will update their local
copy of the script from the same master location (for example, an SVN
database). This greatly helps synchronize any deployed commit scripts
and eases version control management.

Tip: Use Junos Automation to Send SNMP Trap When Event Occurs

This tip is about Event scripts…sort of. You can configure the router
to take a particular action (or actions) when it observes a particular
event (or events). You can even have the router look for basic correla-
tions between events before triggering the actions. There are two ways
to configure the policies and responses: in an actual Event script
(written in XSLT or SLAX) or through configuration under the [edit
event-options] hierarchy. This tip shows the latter method.

	 18	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

C	You can create a Junos script that triggers an SNMP trap when an
event within Junos occurs. In this example, Junos will initiate an
SNMP trap when an RPD KRT Queue Retry event occurs:

[edit]
event-options {
 policy TRAP_rpd_krt_q_retries {
 events rpd_krt_q_retries;
 then {
 raise-trap;
 }
 }
}

Even though this tip is ostensibly about using Event scripts to generate
SNMP traps, you are about to get a second tip. Obviously, one of the
hard things about writing Event scripts is duplicating the events that
should trigger the script in order to test whether the script works.
While the method given in this tip has its limits (for example, it relies
on you to provide the correct information and it is not officially
supported), it can nonetheless be useful in testing Event scripts.

C	To verify that the configuration is working as expected, you can
manually generate the event using the following command (this only
works in Junos 9.1 and above, and is not an officially-supported
command):

% logger -e RPD_KRT_Q_RETRIES -d rpd -a "rpd_krt=kaputsky" "Testing logger event for
RPD_KRT_Q_RETRIES!"

And when you run this command, you can see that the router generates
the SNMP trap:

root@PRIMARY-NNI> monitor traffic interface fxp0 extensive matching "dst host 10.254.5.1
and port 162"
Address resolution is ON. Use <no-resolve> to avoid any reverse lookup delay.
Address resolution timeout is 4s.
Listening on fxp0, capture size 1514 bytes

13:52:54.682158 Out
 Juniper PCAP Flags [Ext], PCAP Extension(s) total length 16
 Device Media Type Extension TLV #3, length 1, value: Ethernet (1)
 Logical Interface Encapsulation Extension TLV #6, length 1, value: Ethernet (14)
 Device Interface Index Extension TLV #1, length 2, value: 1
 Logical Interface Index Extension TLV #4, length 4, value: 3
 -----original packet-----
Reverse lookup for 10.254.5.1 failed (check DNS reachability).
Other reverse lookup failures will not be reported.
Use <no-resolve> to avoid reverse lookups on IP addresses.

	 Tip:	Applying	CoS	in	VPN	 19

IP (tos 0x0,
ttl 64,
id 552,
offset 0,
flags [none],
proto: UDP (17),
length: 450
)
10.254.40.23.56218 > 10.254.5.1.snmptrap:
[udp sum ok]
|30|82|01|a2|02|01SNMPv2c|04|04C=snmp|a7|82|01|95V2Trap(405)|02|04|02|01|02|01|30|82|01|85
|30|10|06|08system.sysUpTime.0=|43|04112583801
|30|19|06|0aS:1.1.4.1.0=|06|0bE:2636.4.12.0.1
|30|24|06|0fE:2636.3.35.1.1.1.2.824=|04|11"RPD_KRT_Q_RETRIES"
|30|1e|06|0fE:2636.3.35.1.1.1.3.824=|04|0b07_d9_06_16_14_34_36_00_2b_00_00
|30|14|06|0fE:2636.3.35.1.1.1.4.824=|02|016
|30|14|06|0fE:2636.3.35.1.1.1.5.824=|02|012
|30|15|06|0fE:2636.3.35.1.1.1.6.824=|42|0210694
|30|16|06|0fE:2636.3.35.1.1.1.7.824=|04|03"rpd"
|30|1e|06|0fE:2636.3.35.1.1.1.8.824=|04|0b"PRIMARY-NNI"
|30|3e|06|0fE:2636.3.35.1.1.1.9.824=|04|2b"Testing logger event for RPD_KRT_Q_RETRIES!"
|30|1b|06|10E:2636.3.35.1.2.1.2.824.1=|04|07"rpd_krt"
|30|1c|06|10E:2636.3.35.1.2.1.3.824.1=|04|08"kaputsky"
|30|1a|06|0aS:1.1.4.3.0=|06|0cE:2636.1.1.1.2.10

MORE? These tips barely scratch the surface of what you can do with Junos
Automation. You can get more detailed coverage in several places,
such as the Day One library, the Junos software documentation, or the
Junos as a Scripting Language web-based training course found here:
http://www.juniper.net/us/en/training/elearning/junos_scripting.html.

Tip: Applying CoS in VPN

This tip only applies when using vrf-table-label.

C	When applying CoS in a VPN, always remember that your customized
CoS classifiers need to be specifically applied to the VRF instance:

class-of-service {
 routing-instances {
 TELEPRESENCE {
 classifiers {
 exp EXP-CLASSIFIER;
 }
 }
 }
}

	 20	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Otherwise, the default classifier will be used implicitly, instead of your
customized one.

Users commonly configure vrf-table-label for Layer 3 VPNs when they
want the router to be able to perform operations on the contents of the
Layer 3 VPN packet. The vrf-table-label statement causes the packet
to be processed twice by the FPC – once to assign it to the appropriate
routing table, and a second time to process the decapsulated IP packet.

In this configuration (and only in this configuration, as far as the
editors can tell), configuring according to this tip ensures that the
inner label of the MPLS packet is processed through your custom EXP
classifier. If you don’t include this statement, Junos may use the default
EXP classifier to assign a forwarding class for the packet based on the
inner label and overwrite any forwarding class previously assigned for
the packet.

In this case, you can use wildcards in the routing-instance name to
assign the classifier to multiple routing instances. You can also assign
a classifier for the special routing-instance name all, which will apply
to any routing instance that does not have a more-specific classifier
applied.

Tip: Finding a Range of Prefixes in the Routing Table

Routers often carry large routing tables that make line-by-line parsing
all but impossible – at the time of this writing, a full BGP feed is over
340,000 routes. So while piping to match is always an option, the
Junos operating system has built-in route matching. This example is
based on the use of a supernet mask to return all routes with a mask
length equal to or greater than that which is specified.

C	In this example, the goal is to display all (active) routes that have
200.10 in the first 16 bits with a mask length of 18 or greater.

regress@abita> show route 200.10/18

inet.0: 343492 destinations, 686941 routes (343491 active, 0 holddown, 343450 hidden)
+ = Active Route, - = Last Active, * = Both

200.10.0.0/24 *[BGP/170] 02:55:18, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 12956 7004 16629 27853 I
 > to 192.168.51.126 via fxp0.0
200.10.12.0/24 *[BGP/170] 02:55:39, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 27978 27978 27978 27978 6429 16990 I
 > to 192.168.51.126 via fxp0.0

	 Tip:	Viewing	Additional	Details	About	the	Contents	of	a	Configuration	 21

200.10.14.0/24 *[BGP/170] 02:55:39, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 27978 27978 27978 27978 6429 16990 I
 > to 192.168.51.126 via fxp0.0
200.10.15.0/24 *[BGP/170] 02:54:41, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 3257 11556 I
 > to 192.168.51.126 via fxp0.0
200.10.16.0/21 *[BGP/170] 02:55:28, localpref 100, from 192.168.69.71
 AS path: 10458 14203 2914 6762 14259 14117 I
 > to 192.168.51.126 via fxp0.0
. . .

Note that omitting the mask causes Junos to populate the rest of the
prefix with 0’s and to then return only the prefix with the longest
match. The result is a return of only 200.10.0.0/24 when a show route
200.10 is entered. Don’t forget you can add other modifiers such as
pipe, or protocol qualifications such as bgp or ospf.

Tip: Viewing Additional Details About the Contents of a Configuration

This tip is about the | display detail option for a show command
that provides additional information beyond the normal output.
When coupled with show commands for the configuration, you can
see a wide variety of useful information – like acceptable values and
ranges for variables, defaults, and prohibited values – as well as
various descriptive fields. The command can be executed from the top
level or from a subordinate stanza, from either the operational or
configuration mode.

C	To view additional information about the details of a configuration,
run the show configuration | display detail command from
operational mode.

From configuration mode it’s the show | display detail command.

Let’s try | display detail, and you’ll see a wide variety of available
information including constraints, ranges, regular expression match-
es, packages, permission bits required, default values, and eligible
products for the command. Also note that not every command has
every single field. The output here is truncated but highlights some
examples of some of the additional detail:

lab@M7i-R106> show configuration | display detail | no-more
Last commit: 2011-05-04 18:47:56 UTC by lab
##
version: Software version information <-- description of command
require: system <-- system permission bits required to execute command

	 22	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

##
version 10.3R1.9; <-- actual command
##
system: System parameters
require: admin system
##
system {
…
 ## host-name: Hostname for this router
 ## range: 0 .. 255 <-- range of legal values
 ## match (regex): ̂ [[:alnum:]._-]+$ <-- regex match conditions
 ## require: system
 ##
 host-name M7i-R106;
 ## saved-core-files: Number of saved core files per executable
 ## range: 1 .. 10 <-- range of legal values
 ##
 ## default: 5 <-- default value for this parameter
 ##
 name-resolution {
 ##
 ## no-resolve-on-input: Resolve hostnames at time of use than at the of the
input
 ## timeout: Timeout for a DNS query
 ## units: seconds <-- units for the described parameter
 ## range: 1 .. 90
 ##
 no-resolve-on-input ## default: 2
 ##
interfaces {
 fe-0/1/0 {
 ## vpls: Virtual private LAN service parameters
 ## products: m5, m10, m20, m40, t640, t320, m40e, TX Matrix, m320, m7i, m10i,
m120, mx960, jsr2300, jsr4300, jsr6300, jsr4350, jsr6350, jsr2320, jsr2350, mx480, mx240,
txp, srx210b, srx210h, srx210h-poe, srx210h-p-m, srx240b, srx240h, srx240h-poe, srx240h-
p-m, srx630, srx650, srx680, srx100b, srx100h, srx100b-wl, srx100h-wl, srx100b-vdsl,
srx100h-vdsl, srx100h-wl-vdsl, srx220h, srx220h-poe, srx220h-p-m, ln1000-v, mx80, mx80-
48t, srx240h-dc
 ##
 family vpls;
 }
 }

C	You can also view details on a specific part of the configuration by
running a show on that particular hierarchy.

For example, without the | display detail command:

lab@M7i-R106> show configuration interfaces fxp0
unit 0 {

	 Tip:	Viewing	Additional	Details	About	a	Commit	 23

 family inet {
 address 172.25.46.106/24;
 }
}

And now with | display detail command:

lab@M7i-R106> show configuration interfaces fxp0 | display detail
##
range: 0 .. 1073741823
##
unit 0 {
 ##
 ## family: Protocol family
 ## constraint: Can't configure protocol family with encapsulation ppp-over-ether-
over-atm-llc
 ## constraint: Can't configure protocol family with encapsulation ppp-over-ether
 ##
 ##
 ## inet: IPv4 parameters
 ## alias: inet4
 ## constraint: family inet is not supported with MC-AE
 ## constraint: family inet is not supported on encapsulation frame-relay-ppp
 ##
 family inet {
 ##
 ## Interface address/destination prefix
 ##
 address 172.25.46.106/24;
 }
}

Tip: Viewing Additional Details About a Commit

(This is an editors’ tip. After spending a couple of weeks of our lives
on this book, we get to do that.)

When we sat around judging the merits of various tips, the previous
tip about | display detail inspired us to recall this variation on a
theme.

Just like the | display detail option that provides additional detail
for router configurations, the option also provides additional detail
for a system commit of the configuration file. You all know that a
normal commit provides a simple commit complete as feedback, but
with the | display detail, a veritable cornucopia of information on
the commit is provided.

Below is the normal commit:

	 24	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

[edit]
lab@M7i-R106# commit
commit complete
And now the same router configuration, with a commit | display detail option:
[edit]
lab@M7i-R106# commit | display detail
2011-05-04 18:47:45 UTC: reading commit script configuration
2011-05-04 18:47:45 UTC: testing commit script configuration
2011-05-04 18:47:45 UTC: no commit scripts are configured
2011-05-04 18:47:45 UTC: no commit script changes
2011-05-04 18:47:45 UTC: no transient commit script changes
2011-05-04 18:47:45 UTC: finished loading commit script changes
2011-05-04 18:47:45 UTC: exporting juniper.conf
2011-05-04 18:47:45 UTC: expanding interface-ranges
2011-05-04 18:47:45 UTC: finished expanding interface-ranges
2011-05-04 18:47:45 UTC: expanding groups
2011-05-04 18:47:45 UTC: finished expanding groups
2011-05-04 18:47:45 UTC: setup foreign files
2011-05-04 18:47:45 UTC: update license counters
2011-05-04 18:47:45 UTC: finish license counters
2011-05-04 18:47:45 UTC: propagating foreign files
2011-05-04 18:47:45 UTC: complete foreign files
2011-05-04 18:47:45 UTC: dropping unchanged foreign files
2011-05-04 18:47:45 UTC: executing 'ffp propagate'
2011-05-04 18:47:45 UTC: daemons checking new configuration
2011-05-04 18:47:45 UTC: commit wrapup...
2011-05-04 18:47:45 UTC: executing 'ffp activate'
2011-05-04 18:47:46 UTC: activating '/var/etc/certs'
2011-05-04 18:47:46 UTC: executing foreign_commands
2011-05-04 18:47:46 UTC: /bin/sh /etc/rc.ui ui_setup_users (sh)
2011-05-04 18:47:46 UTC: not executing ui_commit in rc.ui
2011-05-04 18:47:46 UTC: copying configuration to juniper.save
2011-05-04 18:47:46 UTC: activating '/var/run/db/juniper.data'
2011-05-04 18:47:46 UTC: notifying daemons of new configuration
2011-05-04 18:47:46 UTC: Rotate backup configs
2011-05-04 18:47:46 UTC: commit complete

commit complete

Template: All About Configuration Groups

The editors received quite a few tips about groups and are elated to see
so many users enjoy using the feature. Configuration groups are
indeed powerful, but we found that most of the groups examples
submitted could be improved in some way. So, instead of inserting our
pithy comments throughout several groups tips, we’ve combined the
best tips with some of our own best practices to produce a little primer
on groups. It’s a template that you can usefully apply to various
network administration scenarios.

	 Template:	All	About	Configuration	Groups	 25

C	Configuration groups are a great way to apply common configuration
to multiple parts of the configuration. The interface-range feature
allows you to perform some of the same tasks for interface configura-
tion, but the groups feature may still be the most appropriate way to
handle some interface configuration, and it is the only way (short of
Junos Automation scripts) to apply common settings to pieces of the
configuration other than interfaces.

One of the big differences between the interface-range command and
configuration groups is that the interface-range command will
actually result in the interface being configured, even if the interface is
not separately listed in the configuration. On the other hand, a
configuration group with a match condition only applies to things that
are already configured. So, a configuration group that applies to
ge-0/0/* will only affect an interface that has a name beginning with
ge-0/0/ and that is already listed in the configuration. On the other
hand, an interface-range command that applies to ge-0/0/0 through
ge-0/0/23 will actually configure those 24 interfaces as if you had
individually configured them. You can see this using the show config-
uration | display inheritance command. Therefore, if you want to
configure a large number of interfaces, you may want to use the
interface-range configuration. On the other hand, if you want to
define some default configuration that will apply to interfaces that you
configure individually, a configuration group is probably more
appropriate.

For those who are curious, you can mix interface-range commands
and configuration groups. The software expands interface-range
commands first, and then it applies the statements from configuration
groups to matching interfaces.

You define configuration groups in the [edit groups] hierarchy. You
can have multiple groups. Each group has a name. You can configure
the router to apply one or more groups at various levels of the configu-
ration. Unless you configure the router to apply a group to the configu-
ration, that configuration group will have no effect.

groups {
 BFD_BGP {
 protocols {
 bgp {
 group <*> {
 neighbor <10.100.1.*> {
 bfd-liveness-detection {
 minimum-interval 300;

	 26	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 multiplier 3;
 }
 }
 }
 }
 }
 }
 INTERFACE_DEFAULTS {
 interfaces {
 <*-*> {
 unit <*> {
 family mpls;
 family iso;
 }
 }
 }
 }
 DEFAULT_SYSTEM_SETTINGS {
 system {
 services {
 ssh;
 telnet;
 }
 }
 }
}

You can configure configuration groups with or without match
conditions. If you do not use match conditions (such as shown here
with the DEFAULT_SYSTEM_SETTINGS group), Junos will simply merge the
configuration from the group into the configuration when you apply
the group to a level of the configuration hierarchy.

When you do use match conditions (as in the two preceding examples)
and you apply the groups to a level of the hierarchy, the software
examines that level of the hierarchy (as well as everything underneath
it) for matching configuration entries. When it finds a match, it applies
the listed configuration.

You can use angle brackets to define matches based on wildcards. An
asterisk (*) matches any zero or more characters and a question mark
(?) matches a single character. (This is similar to the way a DOS or
UNIX shell deals with wildcard matches.)

You can also use character classes. Here, you place a list of characters
within square brackets. Junos finds a match if any of those characters
exist in the string it is examining. For example, < [afgxc]e* > matches

	 Template:	All	About	Configuration	Groups	 27

any interface name that begins with ae, fe, ge, xe, or ce. You can also
specify a range of characters or numbers (such as [A-Za-z0-9] that
would match any alphanumeric character).

You can only match on user-defined strings. (For example, the unit
keyword is not a user-defined string, but the number that follows it is
a user-defined string. Likewise, the address keyword is not a user-
defined string, but the address itself is a user-defined string.) It is
important to note that the match conditions in angle brackets must
exactly match the entire user-defined string. You can use the asterisk
to match those parts of the string that are unimportant for your
purposes.

Here is an example of using matches in a group. Note that the group
matches any interface name with a dash (which excludes the fxp0,
me0, vme, and similar interfaces).

On its surface, this seems like a good tip, because it automatically
excludes the management interfaces. However, note that it also
excludes Aggregated Ethernet (ae) interfaces, which may not be what
you want. A better solution may be to use the apply-groups-except
statement in the management interface configuration. This tells Junos
not to apply that group to that interface, even if the group is applied at
a higher level of the hierarchy.

Also, note that the group matches the unit number with *. This
matches absolutely any string (and, certainly, any unit number):

groups {
 INTERFACE_DEFAULTS {
 interfaces {
 <*-*> {
 unit <*> {
 family mpls;
 family iso;
 }
 }
 }
 }
}

Here is another example of groups. In this case, it looks at IP address-
es. BFD parameters are applied to all BGP neighbors that have an IP
address beginning with 10.100.1. :

groups {
 BFD_BGP {
 protocols {
 bgp {

	 28	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 group <*> {
 neighbor <10.100.1.*> {
 bfd-liveness-detection {
 minimum-interval 300;
 multiplier 3;
 }
 }
 }
 }
 }
 }
}

Now let’s extend the previous example and only apply the BFD
parameters to any BGP group that starts with the name CUST_GOLD_.
Junos will only apply these BFD parameters to BGP neighbors with an
IP address beginning with 10.100.1. and which are in a group with a
name that begins with CUST_GOLD_:

groups {
 BFD_BGP {
 protocols {
 bgp {
 group <CUST_GOLD_*> {
 neighbor <10.100.1.*> {
 bfd-liveness-detection {
 minimum-interval 300;
 multiplier 3;
 }
 }
 }
 }
 }
 }
}

This is only a small introduction to these wildcard expressions. It is
worth noting that this type of match is also used elsewhere. For
example, the interface-range command will take a similar kind of
wildcard match. Also, you can use these wildcard matches to select
interface names in the show interfaces CLI command. The only big
difference is that the angle-brackets (< >) are only used to surround
matches in the [edit groups] configuration hierarchy; elsewhere, you
just use the text of the match (for example, show interfaces ge-0/0/*).

Once you have defined the groups and applied them at the appropriate
hierarchy levels, you can use the display inheritance pipe command
to show the way the configuration looks with the group commands
applied.

	 Template:	All	About	Configuration	Groups	 29

The display inheritance pipe command has a few side-effects. It also
expands interface ranges, it does not show configuration groups or
interface ranges themselves, and it also hides any piece of the configu-
ration marked as inactive. Even if you are not using groups, it can be a
good way to exclude deactivated configurations from the configura-
tion display.

Here is an example of using groups to perform a specific thing, namely
adding family mpls to every unit on any transit interface (but not fxp0,
me0, vme, or any other interface without a dash):

groups {
 mpls {
 interfaces {
 <*-*> {
 unit <*> {
 family mpls;
 }
 }
 }
 }
}
apply-groups [mpls];
interfaces {
 ge-0/0/3 {
 unit 0 {
 family inet {
 address 172.18.2.2/30;
 }
 }
 }
 ge-0/0/4 {
 vlan-tagging;
 unit 102 {
 vlan-id 102;
 family inet {
 address 172.20.102.1/24;
 }
 }
 unit 202 {
 vlan-id 202;
 family inet {
 address 172.20.202.1/24;
 }
 }
 }
}

[edit]
lab@srxA-2# show interfaces | display inheritance

	 30	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

ge-0/0/3 {
 unit 0 {
 family inet {
 address 172.18.2.2/30;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
}
ge-0/0/4 {
 vlan-tagging;
 unit 102 {
 vlan-id 102;
 family inet {
 address 172.20.102.1/24;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
 unit 202 {
 vlan-id 202;
 family inet {
 address 172.20.202.1/24;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
}

In this next example, Junos sets the VRRP priority to 200 on any
VRRP group configured for any unit numbered 500-599. It will also
set the VRRP priority to 50 on any VRRP group configured for any
unit numbered 600-699. You might use such a configuration in a
load-balancing situation where one router is supposed to be the
primary VRRP router for one set of VLANs and the backup VRRP
router for another set of VLANs:

groups {
 VRRP-PRIMARY-500-SECONDARY-600 {
 interfaces {
 <*> {
 unit <5??> {
 family inet {
 address <*> {
 vrrp-group <*> {

	 Template:	All	About	Configuration	Groups	 31

 priority 200;
 }
 }
 }
 }
 unit <6??> {
 family inet {
 address <*> {
 vrrp-group <*> {
 priority 50;
 }
 }
 }
 }
 }
 }
 }
}

Now, let’s apply BFD to OSPF interfaces. This configuration applies
different settings for WAN and LAN interfaces, based on the interface
name: <[fgxca]e> matches any transit Ethernet interface, and <*>
matches any interface. When a piece of configuration matches multiple
match conditions in a group, the values from the first-matched section
override conflicting values from later matches. In this example, that
means that for Ethernet interfaces, the values from the first interface
specification will override the second one. Non-Ethernet interfaces
should only match the second interface specification, so they will
inherit those values:

groups {
 BFD_OSPF {
 protocols {
 ospf {
 area <*> {
 interface "<[fgxca]e*>" {
 bfd-liveness-detection {
 minimum-interval 50;
 multiplier 3;
 }
 }
 interface <*> {
 bfd-liveness-detection {
 minimum-interval 300;
 multiplier 3;
 }
 }
 }
 }
 }

	 32	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 }
}

[edit]
root@srxA-1# show protocols ospf| display inheritance
area 0.0.0.0 {
 interface ge-0/0/0.0 {
 ##
 ## 'bfd-liveness-detection' was inherited from group 'BFD_OSPF'
 ##
 bfd-liveness-detection {
 ##
 ## '50' was inherited from group 'BFD_OSPF'
 ##
 minimum-interval 50;
 ##
 ## '3' was inherited from group 'BFD_OSPF'
 ##
 multiplier 3;
 }
 }
 interface se-0/0/0.0 {
 ##
 ## 'bfd-liveness-detection' was inherited from group 'BFD_OSPF'
 ##
 bfd-liveness-detection {
 ##
 ## '300' was inherited from group 'BFD_OSPF'
 ##
 minimum-interval 300;
 ##
 ## '3' was inherited from group 'BFD_OSPF'
 ##
 multiplier 3;
 }
 }
}

While this has been a whirlwind tour through Junos configuration
groups, mostly because our editor in chief was literally pacing outside
our lab door demanding the final manuscript, you can see that they
are powerful when used correctly. To get maximum benefit from
groups, you need to understand the match conditions. Also, don’t
forget to use the display inheritance pipe command before you
commit in order to verify that the groups are applied as you expect
before you commit the changes. BTW: Day One: Configuring Junos
Basics has a good introduction on groups: www.juniper.net/dayone.

	 Tip:	Set	Idle	Timeout	for	Root	User		 33

Tip: Set Idle Timeout for Root User

Here’s a nice security feature that’s easy to implement: the command
line idle timeout.

C	Set the idle timeout for the root user to keep the system secure in case
an administrator forgets to logout from a console session. To do so, in
operational mode use the set cli idle-timeout X command, where X
is in minutes.

After the specified time with no interactive input, the session will log
itself out. Set an idle timeout value no greater than 10 minutes as a
reasonable security practice. Here are some other tidbits about
idle-timeout:

lab@M7i-R106> set cli idle-timeout ?
Possible completions:
 <timeout> Maximum idle time (0..100000 minutes)
[edit]
lab@M7i-R106# show | match idle | display set
set system login class AUDITOR idle-timeout 10
set system login class EMERGENCY idle-timeout 10

PS: See the next Tip’s show cli output to see the value that is actually
configured for idle timeout.

Tip: Increase Terminal Screen Width

C	When commands become too long you may not see the beginning of
your line but instead the ... characters, or an ellipsis. To avoid
truncated output, you can increase the terminal width with the set cli
screen-width 200 operational mode command.

This is because the default screen-width is 157. Making the screen-
width wider allows you to see more characters without using the
ellipsis. Note that this feature only lasts for the duration of the session.

Let’s try to show an example, but keep in mind you’re reading this on
paper, or a computer screen, or an eBook, and it probably will not
show real well…

lab@M7i-R106> show cli
CLI complete-on-space set to on
CLI idle-timeout disabled <-- current setting for idle-timout (from previous Tip)
CLI restart-on-upgrade set to on

	 34	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

CLI screen-length set to 68
CLI screen-width set to 157 <-- default setting for screen width
CLI terminal is 'vt100'
CLI is operating in enhanced mode
CLI timestamp disabled
CLI working directory is '/var/home/lab'

Here’s some output with the default setting:

[edit]
lab@M7i-R106# ...s-is-a-long-lsp-name to 1.1.1.1 from 2.2.2.2 primary path-name-long
optimize-timer 60 priority 7 7

And now some output of the same command with the screen-width set
to a higher value:

lab@M7i-R106> set cli screen-width 200
Screen width set to 200
lab@M7i-R106> edit
Entering configuration mode
lab@M7i-R106# set protocols mpls label-switched-path this-is-a-long-lsp-name to 1.1.1.1
from 2.2.2.2 primary path-name-long optimize-timer 60 priority 7 7

With the wider screen-width, the beginning of the command line does
not get turned into an ellipsis (…).

Tip: View All Routes Except Those from a Particular Protocol

Most readers should be familiar with how to specify a routing source
as a qualifier to a show route command so that only the routes from
that source, say BGP, are displayed. This tip makes good use of the
CLI pipe and except function to allow a handy negation of this
function when desired.

C	In many cases, the majority of routes come from a particular protocol,
for example BGP. When you have a lesser subset that comes from a
variety of sources, such as direct and your IGP, and you want to display
all routes except those learned from BGP, use the show route terse
command along with the pipe and except command to help reduce the
clutter.

regress@abita> show route terse

inet.0: 343404 destinations, 686762 routes (343403 active, 0 holddown, 343359 hidden)
+ = Active Route, - = Last Active, * = Both

	 Tip:	Logging	Policy	Drops	to	a	Specific	Log	File	 35

A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 1.0.2.0/30 O 10 310 >172.16.1.97
* 1.1.2.0/30 O 10 110 >172.16.1.97
* 1.5.0.0/16 B 170 100 >192.168.51.126 10458 14203 2914 38639 I
* 1.6.0.0/15 B 170 100 >192.168.51.126 10458 14203 2914 38639 I
* 1.8.0.0/16 B 170 100 >192.168.51.126 10458 14203 2914 38639 I
. . .
regress@abita> show route terse | except B
inet.0: 343404 destinations, 686762 routes (343403 active, 0 holddown, 343359 hidden)
A Destination P Prf Metric 1 Metric 2 Next hop AS path
* 1.0.2.0/30 O 10 310 >172.16.1.97
* 1.1.2.0/30 O 10 110 >172.16.1.97
* 10.4.0.0/16 S 5 >192.168.51.126
* 10.5.0.0/16 S 5 >192.168.51.126
. . .

Tip: Logging Policy Drops to a Specific Log File

C	It’s possible to log security policy denials to their own logfile – for
example, if you wish to keep a separate copy of dropped traffic. To do
this, create a new logfile and adjust the match condition:

[edit]
juniper@SRX5800# set system syslog file traffic-deny any any

[edit]
juniper@SRX5800# set system syslog file traffic-deny match "RT_FLOW_SESSION_DENY"

Note that you must configure logging on the security policy itself. Do it
with the session-close and/or the session-init flag:

[edit]

juniper@SRX5800# set policy denied_apps then deny log session-close session-init

Tip: Troubleshooting Connectivity on the SRX

C	When troubleshooting connectivity try using a basic datapath traceop-
tion flag. This is done by setting a file, defining your filters, and then
enabling the traceoptions flag, like so:

[edit]
juniper@SRX5800# edit security flow traceoptions

[edit security flow traceoptions]
juniper@SRX5800# set file tshoot_web

	 36	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

[edit security flow traceoptions]
juniper@SRX5800# set packet-filter trust_to_web source-prefix 10.1.1.100/32 destination-
prefix 10.2.0.3/32

[edit security flow traceoptions]
juniper@SRX5800# set packet-filter web_to_trust source-prefix 10.2.0.3/32 destination-
prefix 10.1.1.100/32

[edit security flow traceoptions]
juniper@SRX5800# set flag basic-datapath

Once that has been commited and traffic has passed, you can quickly
check for bi-directional traffic using the match command. Here you can
see the traffic that matched the filters, and quickly confirm bidirection-
al traffic:

juniper@SRX5800> show log tracetest | match matched
Jan 21 23:32:21 23:32:21.807167:CID-0:RT:<10.1.1.100/58543- >172.31.100.60/80;6> matched
filter Trust_to_dmz:
Jan 21 23:32:21 23:32:21.823519:CID-0:RT:<172.31.100.60/80- >10.1.1.100/58543;6> matched
filter dmz_to_trust:
Jan 21 23:32:21 23:32:21.825358:CID-0:RT:<10.1.1.100/58543- >172.31.100.60/80;6> matched
filter Trust_to_dmz:
Jan 21 23:32:21 23:32:21.825358:CID-0:RT:<10.1.1.100/58543- >172.31.100.60/80;6> matched
filter Trust_to_dmz:
Jan 21 23:32:22 23:32:21.935552:CID-0:RT:<172.31.100.60/80- >10.1.1.100/58543;6> matched
filter dmz_to_trust:
Jan 21 23:32:22 23:32:21.937322:CID-0:RT:<10.1.1.100/58543- >172.31.100.60/80;6> matched
filter Trust_to_dmz:

If you have to look at the entire debug, use the trim flag and it will cut
out some of the unneeded information. Here trim 42 is used:

juniper@SRX5800> show log tshoot_web | trim 42
<10.1.1.100/51510->10.2.0.3/80;6> matched filter trust_to_web:
packet [48] ipid = 57203, @423f6b9e
---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423f6a00
flow process pak fast ifl 68 in_ifp ge-0/0/0.0
ge-0/0/0.0:10.1.1.100/51510->10.2.0.3/80, tcp, flag 2 syn

On Junos 10.3R1.9, we found that trim 42 occasionally cut off the
first character of the information for a data packet. You might need to
use a lower or higher number depending on the output.

	 Tip:	Debugging	Screens	on	the	SRX	 37

Tip: Debugging Screens on the SRX

This tip gives useful information on debugging screens. Although it is
written in the context of implementing the screens, you can use this tip
while troubleshooting connectivity problems, too.

C	A helpful tip when designing or first implementing a new screen profile
is to use the alarm-without-drop flag. It alarms and logs all screen hits,
but doesn’t drop traffic. This makes it a great way to avoid unintended
misconfigurations.

juniper@SRX5800# set security screen ids-option untrusted-internet alarm-without-drop

Once you’ve confirmed that there are no un-expected impacts you can
configure the screens to drop attacks, as a good screen should.

Tip: Understand Filter Behavior and GRE Packet Flow

Juniper routers process GRE packets in relationship to firewall filters
in a non-intuitive way. Knowing that outbound GRE packets are
subjected to your inbound filter can help you avoid a problem that has
driven others to the brink of madness.

C	Most Juniper routers process GRE traffic in hardware, providing
reliable performance for traffic that must traverse a tunnel. When
transit packets are sent to the tunnel device for encapsulation and the
tunnel device encapsulates the packet, it needs to send the new (now
GRE) packet back to the PFE for processing. When it sends this
outbound packet to the PFE for processing, it sets the input interface to
be the next-hop outbound interface. This means that the packet is
processed through all the input filters, input service-sets, etc., that are
applied to the outbound interface. (After this, the PFE normally
performs a route lookup and performs any necessary output process-
ing associated with the outbound interface.) For this reason, the
outbound GRE traffic needs to be permitted through the input filters
on the outbound interface.

This tip shows how to configure a GRE tunnel for which you also
want to configure an anti-spoofing firewall filter (a firewall filter that
blocks any traffic from the Internet that has a source address from
your internal network). Normally, such a filter would be applied in the
input direction of the service provider-facing interface with a term set

	 38	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

to discard all traffic with a source address matching your internal
networks, to include the source of the GRE tunnel itself. But the
unique behavior described above for GRE packets means that you will
have to allow GRE packets from your source address in the input
direction of your outbound interface. For example, assume the
following partial configuration:

interfaces {
 gr-0/0/0 {
 unit 0 {
 tunnel {
 source 1.1.1.1;
 destination 2.2.2.2;
 }
 }
 }
 fe-1/0/0 {
 unit 0 {
 family inet {
 filter {
 input inputfilter;
 }
 }
 }
 }
}

Assume that a route lookup on 2.2.2.2 (the tunnel destination) shows
a next-hop of fe-1/0/0.0.

The firewall filter inputfilter needs to allow GRE packets from 1.1.1.1
to 2.2.2.2 (in other words, it needs to allow the outbound packets).
You can still gain spoof protection by filtering non-GRE traffic with
your internal source address.

Note that this only affects transit traffic. Traffic (such as routing
protocol traffic) originating from the R, should not be affected by the
firewall filter.

Template: Using the Interface Range Command

The interface-range command is quite useful. It allows you to
configure multiple interfaces at the same time. It also allows you to
reference interfaces as a group elsewhere.

	 Template:		Using	the	Interface	Range	Command	 39

C	It’s a common task: you want to configure multiple interfaces the same
way but you have to configure each interface separately, like this:

[edit]
root@myrouter# set interfaces ge-0/0/0 unit 0 family ethernet-switching vlan members
finance

[edit]
root@myrouter# set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members
finance

[edit]
root@myrouter# set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members
finance

[edit]
root@myrouter# set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members
finance

[edit]
root@myrouter# show interfaces
ge-0/0/0 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/1 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/2 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/3 {
 unit 0 {

	 40	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}

You end up with the desired result but it took four commands. Imagine
if you had twenty interfaces to configure this way!

As of Junos 10.0, the interface-range command provides a good
solution to this problem. Using the preceding example, the same result
can be achieved in just two commands (assume the interfaces config-
ured have been deleted). Here are the two commands:

[edit]
root@myrouter# set interfaces interface-range vlan-finance member-range ge-0/0/0 to
ge-0/0/3

[edit]
root@myrouter# set interfaces interface-range vlan-finance unit 0 family ethernet-
switching vlan members finance

[edit]
root@myrouter# show interfaces
interface-range vlan-finance {
 member-range ge-0/0/0 to ge-0/0/3;
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}

You can mix and match interface-range configuration with individual
interface configuration; the settings are merged together.

You can also verify that the settings are correctly applied to each
interface in the range by using the display inheritance pipe com-
mand:

[edit]
root@myrouter# show interfaces | display inheritance
##
'ge-0/0/0' was expanded from interface-range 'vlan-finance'
##
ge-0/0/0 {
 ##

	 Template:		Using	the	Interface	Range	Command	 41

 ## '0' was expanded from interface-range 'vlan-finance'
 ##
 unit 0 {
 ##
 ## 'ethernet-switching' was expanded from interface-range 'vlan-finance'
 ##
 family ethernet-switching {
 ##
 ## 'vlan' was expanded from interface-range 'vlan-finance'
 ##
 vlan {
 ##
 ## 'finance' was expanded from interface-range 'vlan-finance'
 ##
 members finance;
 }
 }
 }
}

'ge-0/0/1' was expanded from interface-range 'vlan-finance'

ge-0/0/1 {
. . .

Now let’s use the except pipe command to eliminate the hash marks:

[edit]
root@myrouter# show | display inheritance | except ##
ge-0/0/0 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/1 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/2 {
 unit 0 {
 family ethernet-switching {

	 42	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 vlan {
 members finance;
 }
 }
 }
}
ge-0/0/3 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members finance;
 }
 }
 }
}

The output now looks exactly as it did when configuring each interface
manually. And, most importantly, it functions the same way, too.

Selecting Interfaces

You can select non-contiguous interfaces and place them in the same
interface-range group. This example selects interfaces ge-0/0/2 through
ge-0/0/10, ge-0/0/15 through ge-0/0/17, ge-0/0/19, and ge-0/0/20:

[edit]
user@EX#set interfaces interface-range Range1 member-range ge-0/0/2 to ge-0/0/10;

[edit]
user@EX#set interfaces interface-range Range1 member-range ge-0/0/15 to ge-0/0/17;

[edit]
user@EX#set interfaces interface-range Range1 member-range ge-0/0/19 to ge-0/0/20;

You can also select interfaces using a similar (although slightly differ-
ent) wildcard match notation as is used in configuration groups. Here
is an annotated example:

user@sw> show configuration interfaces interface-range EDGE
/* Match all interfaces that start with "ge-0/0/". */
member ge-0/0/*;
/* Match interfaces ge-1/0/0 through ge-1/0/9. */
member "ge-1/0/[0-9]";
/* Match interface ge-1/0/12. */
member ge-1/0/12;
/* Match interface ge-1/0/20 through ge-1/0/39. */
member "ge-1/0/[20-39]";
/* Match any ge- interface on PIC0 of FPC 2 through 8. */
member "ge-[2-8]/0/*";

	 Tip:	Commit	Previous	Configuration	and	Software	Package	 43

Note that the square brackets can enclose two-digit ranges of numbers.
So, [20-39] will match every number from 20 through 39 (inclusive),
and create an interface for each of those numbers.

Using Interface Ranges Elsewhere

You can also reference interface ranges in other places where you
would reference an actual interface. For example, to set all interfaces in
the interface range named EDGE to be edge ports for MSTP:

user@sw> show configuration protocols mstp
...
interface EDGE {
 edge;
}

Tip: Commit Previous Configuration and Software Package

The Junos commit model provides a variety of useful features. The
rollback feature, enabled by the commit model, can save a lot of
operator agony. But first, here is the original tip. It will then be
embellished, but only because the editors feel this is a topic deserving
of such attention.

C	To commit a previous configuration and software package:

1. Go to edit/configure mode.

2. Issue the rollback <number> command.

3) Issue the commit command.

To load a previous software package:

1. Go to operational mode.

2. Issue the system software rollback command.

3 Issue the system reboot command.

Let’s drill down a little with some background.

The commit model provides a candidate configuration that is manipu-
lated by the operator. The candidate configuration functions as a
configuration scratchpad. When you’re ready and all desired configu-
ration changes have been made, the operator executes a commit opera-
tion, by typing commit :) . If the candidate configuration parses

	 44	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

correctly (by passing syntax and semantic checks), it becomes the new
operational configuration, with a name juniper.conf.gz. At this point
both the operational configuration and the candidate configuration
are identical. The immediately previous operational configuration is
renamed to juniper.conf.1.gz.

Junos maintains the fifty most recent valid configurations. Each subse-
quent configuration is renumbered. So 1 becomes 2, 2 becomes 3, and
so forth, down to when juniper.conf.48 becomes 49, when the old
juniper.conf.49.gz goes away (just like old network operators).

Note that just because a configuration is valid does not mean that it
works the way you want. You can have functioning configurations
that pass parsing, but that do not function. For example, you can have
an incorrect loopback address listed for a BGP session. The configura-
tion passes parsing because an address is listed. It’s just the wrong
address – so do not confuse a valid configuration with a working
configuration. The commit hierarchy only saves valid configurations.
On systems with hard drives and compact flash, configuration file
juniper.conf.gz up to juniper.conf.3.gz are stored on the compact flash
and the remaining configuration files are stored on the hard drive. You
can see from the following output of show system storage that /var/
db/config and /config are on separate partitions. The output is
truncated for space. (You can execute the operational mode command
from configuration mode by using the run keyword.)

[edit]
lab@M7i-R106# run show system storage <-- use run to execute operational mode commands
Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 885M 203M 611M 25% /
/dev/md9 2.0G 8.0K 1.8G 0% /tmp
/dev/md10 2.0G 996K 1.8G 0% /mfs
/dev/ad0s1e 98M 2.4M 88M 3% /config
/dev/ad1s1f 34G 5.8G 25G 19% /var
lab@M7i-R106> show system storage <-- execute command from operational mode
Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 885M 203M 611M 25% /
/dev/ad0s1e 98M 2.4M 88M 3% /config
/dev/ad1s1f 34G 5.8G 25G 19% /var
lab@M7i-R106# run file list /var/db/config
/var/db/config:
juniper.conf.10.gz
juniper.conf.11.gz
.
.
.
juniper.conf.38.gz
juniper.conf.39.gz

	 Tip:	Commit	Previous	Configuration	and	Software	Package	 45

juniper.conf.4.gz <-- note file 4 shows up after file 39 and before 40
juniper.conf.40.gz
juniper.conf.41.gz
.
.
.
juniper.conf.48.gz
juniper.conf.49.gz <-- last saved valid configuration
juniper.conf.5.gz
juniper.conf.6.gz
juniper.conf.7.gz
juniper.conf.8.gz
juniper.conf.9.gz
juniper.conf.pre-install
[edit]
lab@M7i-R106# run file list /config
/config:
.snap/
juniper.conf.1.gz
juniper.conf.2.gz
juniper.conf.3.gz
juniper.conf.gz
juniper.conf.md5
rescue.conf.gz

Using the rollback command, an operator can make any older con-
figuration file the new candidate configuration. After a subsequent
commit, it then becomes (again) the active configuration. A rollback 0
wipes out all scratchpad changes in the candidate configuration by
making the candidate configuration identical to the active configura-
tion.

This command is executed from the configuration mode. A nice
option for the commit command is to do a commit comment “regex”
where the “regex” is a comment. The show system commit command
then lets you read the comment later on. This is especially useful if you
are making a series of changes to identify the behavior changes that
occur with different parameters. It’s always nice to be able to go back
to a known working configuration through a simple rollback com-
mand, as in this tip.

Use the following simple process to rollback a previous configuration
file:

1) go to edit/configuration mode

2) rollback <number>

3) commit

	 46	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

In the example below, you change the interface name fe-0/1/1 to
fe-0/1/3. You then use a show | compare to evaluate the effect of your
changes on the configuration file and commit the configuration with a
commit comment <regex>. You can see your comment associated with
that iteration of the configuration with a show system commit:

[edit]
lab@M7i-R106# rename interfaces fe-0/1/1 to fe-0/1/3
lab@M7i-R106# show | compare <-- see what effect your change had
[edit interfaces]
- fe-0/1/1 {
- vlan-tagging;
- unit 10 {
- description "VRF red interface";
- vlan-id 10;
- family inet {
- address 10.10.1.2/30;
- }
- }
- unit 20 {
- description "VRF blue interface";
- vlan-id 20;
- family inet {
- address 10.20.1.2/30;
- }
- }
- }
+ fe-0/1/3 {
+ vlan-tagging;
+ unit 10 {
+ description "VRF red interface";
+ vlan-id 10;
+ family inet {
+ address 10.10.1.2/30;
+ }
+ }
+ unit 20 {
+ description "VRF blue interface";
+ vlan-id 20;
+ family inet {
+ address 10.20.1.2/30;
+ }
+ }
+ }

Then:
[edit]
lab@M7i-R106# commit comment "change interface fe-0/1/1 to fe-0/1/3"
commit complete

	 Tip:	Commit	Previous	Configuration	and	Software	Package	 47

Now let’s verify that your comment string is associated with the
configuration file:

[edit]
lab@M7i-R106# run show system commit
0 2011-05-17 11:28:00 UTC by lab via cli
 change interface fe-0/1/1 to fe-0/1/3
1 2011-05-04 18:47:56 UTC by lab via cli
2 2011-05-04 18:47:46 UTC by lab via cli

To demonstrate the rollback <number> capability, another configura-
tion change was made and committed. So your original configuration
is now number 2. To change the interface back to fe-0/1/1, simply do a
rollback 2, such as the following:

[edit]
lab@M7i-R106# run show system commit
0 2011-05-17 12:15:26 UTC by lab via cli
1 2011-05-17 11:28:00 UTC by lab via cli <-- config with fe-0/1/3
 change interface fe-0/1/1 to fe-0/1/3
2 2011-05-04 18:47:56 UTC by lab via cli <-- config with fe-0/1/1
3 2011-05-04 18:47:46 UTC by lab via cli
[edit]
lab@M7i-R106# rollback 2
load complete

And of course, verify that the changes match what you desire (in this
case adding fe-0/1/1and removing fe-0/1/3):

[edit]
lab@M7i-R106# show | compare
[edit]
- logical-systems {
- test;
- }
[edit interfaces]
+ fe-0/1/1 {
+ vlan-tagging;
+ unit 10 {
+ description "VRF red interface";
+ vlan-id 10;
+ family inet {
+ address 10.10.1.2/30;
+ }
+ }
+ unit 20 {
+ description "VRF blue interface";
+ vlan-id 20;
+ family inet {
+ address 10.20.1.2/30;

	 48	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

+ }
+ }
+ }
- fe-0/1/3 {
- vlan-tagging;
- unit 10 {
- description "VRF red interface";
- vlan-id 10;
- family inet {
- address 10.10.1.2/30;
- }
- }
- unit 20 {
- description "VRF blue interface";
- vlan-id 20;
- family inet {
- address 10.20.1.2/30;
- }
- }
- }
[edit]
lab@M7i-R106# commit

commit complete

Technique: Automatically Allow Configured BGP Peers in a Loopback
Firewall Filter

This technique makes excellent use of the Junos prefix-list and
apply-path features to parse a configuration and then dynamically
build a list of matching prefixes for use in a firewall filter. It’s a real
time-saver when your BGP peering environment undergoes frequent
changes.

C	The Junos operating system allows you to protect your device’s control
plane by applying a firewall filter to the lo0 interface, but you also
want to permit BGP traffic only from explicitly configured peers
without having to perform updates to the list of permitted BGP peers
in the firewall filter when new peers are added or old ones are removed.

To achieve this goal use the apply-path directive to automatically add
the IP addresses of configured BGP peers to a prefix-list, and then
reference this prefix-list in a firewall filter to allow BGP traffic only
from those peers. The apply-path statement is used to dynamically
prefix-lists by referencing other portions of the configuration. The path
consists of elements separated by spaces. Each element matches a

	 Technique:	Automatically	Allow	Configured	BGP	Peers	in	a	Loopback	Firewall	Filter	 49

specific keyword or identifier within the configuration, and you can use
wildcards to match more than one identifier as long as they are en-
closed in angle brackets, for example, <*>.

Here, the apply-path directive is used to automatically add the IP
addresses of configured BGP peers to a prefix-list:

policy-options {
 prefix-list bgp-peers {
 apply-path "protocols bgp group <*> neighbor <*>";
 }
}

Next, reference the resulting bgp-peers prefix list in a firewall filter. In
this example, the port directive is used to match traffic with the
well-known BGP port number (179) in either the source or destination
port fields:

firewall {
 family inet {
 filter protect-re {
 ...
 term allow-bgp {
 from {
 source-prefix-list {
 bgp-peers;
 }
 protocol tcp;
 port 179;
 }
 then accept;
 }
 ...
 }
 }
}

Note that this filter adheres to current best practice by also specifying
the TCP transport protocol to prevent false matches against non-BGP
traffic!

	 50	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Accessing Online Help

Junos provides you with the flexibility to summon help about a
command or topic from the CLI. In fact, large portions of the docu-
mentation set are stored on secondary media via the Junos Online
Documentation package provided in the standard software distribu-
tion packages.

C	The Junos CLI offers three online help options:

1) Help topic: use it to obtain general guidelines for a statement:

user@host# help topic interfaces address
Configuring the Interface Address

 You assign an address to an interface by specifying the address when
 configuring the protocol family. For the inet family, configure the
 interface's IP address. For the iso family, configure one or more
 addresses for the loopback interface. For the ccc, tcc, mpls, tnp, and
 vpls families, you never configure an address.
.................<snip>

2) Help reference: use it for assistance with configuration syntax:

user@host# help reference interfaces address
address

 Syntax

 address address {
 arp ip-address (mac | multicast-mac) mac-address <publish>;
 broadcast address;
 destination address;
 destination-profile name;
 eui-64;
 master-only;
 multipoint-destination address dlci dlci-identifier;
 multipoint-destination address {
................<snip>

3) Help apropos: use it to clarify the context of configuration or
operational mode commands based on the specified keyword and
mode in which the command is executed. It’s most useful when you
remember a general action that is desired but cannot recall the exact
syntax needed:

[edit]
regress@mse-a# help apropos loopback
set dynamic-profiles <profile-name> interfaces sonet-options loopback <loopback>

	 Tip:	SNMP	OIDs	for	SRX	Monitoring	 51

 Loopback mode
set dynamic-profiles <profile-name> interfaces sonet-options loopback <loopback> local
 Local loopback
set dynamic-profiles <profile-name> interfaces sonet-options loopback <loopback> remote
. . . .

The help topic and help reference commands return the same result
when run in operational or configuration mode. In contrast, help
apropos provides contextual help based on the mode in which the
command is entered; in operational mode it displays operational
(show) commands for the specified variable, while in configuration
mode the same command returns help with set commands.

user@host> help apropos loopback
test interface feac-loop-initiate
 Initiate FEAC loopback
test interface feac-loop-terminate
 Terminate FEAC loopback

. . .

Tip: SNMP OIDs for SRX Monitoring

Over time, SNMP Monitoring is useful to monitor and track device
information, but finding the right Object IDs (OIDs) to monitor can
sometimes be a challenge. This tip can help you find what you are
looking for.

C	Use the Junos CLI to browse the SNMP MIB by using the find function
to locate items with a description:

lab@host> show snmp mib walk .1 | match descr
sysDescr.0 = Juniper Networks, Inc. m320 internet router, kernel JUNOS 10.0-20110318.0
#0: 2011-03-18 03:10:39 UTC builder@ormonth.juniper.net:/volume/build/junos/10.0/
production/20110318.0/obj-i386/bsd/sys/compile/JUNIPER Build date: 2011-03-18 02:52:44 UTC
Copy
ifDescr.1 = fxp0
. . .

You can pipe the output through XML Format to obtain the related
information, to include the OID:

user@host> show snmp mib get sysDescr.0 | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.0I0/junos">
 <snmp-object-information xmlns="http://xml.juniper.net/junos/10.0I0/junos-snmp">
 <snmp-object>
 <name>sysDescr.0</name>
 <object-value-type>ASCII string</object-value-type>
 <object-value>Juniper Networks, Inc. m320 internet router, kernel JUNOS 10.0-
20110318.0 #0: 2011-03-18 03:10:39 UTC builder@ormonth.juniper.net:/volume/build/

	 52	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

junos/10.0/production/20110318.0/obj-i386/bsd/sys/compile/JUNIPER Build date: 2011-03-18
02:52:44 UTC Copy</object-value>
 <oid>1.3.6.1.2.1.1.1.0</oid>
 </snmp-object>
 </snmp-object-information>
 <cli>
 <banner>{master}</banner>
 </cli>
</rpc-reply>

For a list of standard MIBs supported by Junos, see: http://www.
juniper.net/techpubs/en_US/junos10.3/topics/reference/standards/
snmp-std-mibs-junos-nm.html .

And for a list of private MIBs supported by Junos, see: http://www.
juniper.net/techpubs/en_US/junos10.3/topics/concept/juniper-specific-
mibs-junos-nm.html

NOTE The following MIB Table is useful for SRX monitoring:

run show snmp mib walk jnxJsSPUMonitoringMIB | display xml

Tip: Monitoring Router Alarm LEDs and Controls (craft-interface)

A popular remote troubleshooting command allows the operator to
see the status of router alarm LEDs and controls without being
physically present.

C	The show chassis craft-interface command provides a console/
remote session display of the current alarms and control values. This is
particularly useful if the remote operators are not familiar with the
equipment or the equipment is in an unoccupied space where no one
can see the information. See what happens when the command is
issued:

root@M320> show chassis craft-interface
FPM Display contents: <-- what you see on the front panel LCD
 +--------------------------+
 |M320 |
 |1 Alarm active |
 |Y: Backup RE Active |
 | |
 +--------------------------|

Front Panel System LEDs: <-- outputs of control values on the chassis (* means value set)
Routing Engine 0 1

OK * *
Fail . .

http://www.juniper.net/techpubs/en_US/junos10.3/topics/reference/standards/snmp-std-mibs-junos-nm.html
http://www.juniper.net/techpubs/en_US/junos10.3/topics/reference/standards/snmp-std-mibs-junos-nm.html
http://www.juniper.net/techpubs/en_US/junos10.3/topics/reference/standards/snmp-std-mibs-junos-nm.html

	 Tip	:	Why	is	My	Junos	Device	Alarm	LED	Status	Red?	 53

Master . * <-- RE1 is Master, RE0 is NOT Master

Front Panel Alarm Indicators:

Red LED .
Yellow LED .
Major relay .
Minor relay .

Front Panel FPC LEDs:
FPC 0 1 2 3 4 5 6 7

Red
Green * * * * * * * *

CB LEDs:
 CB 0 1

Amber . .
Green * *
Blue . *

SIB LEDs:
 SIB 0 1 2 3

Red
Green * * * *

PS LEDs:
 PS 0 1 2 3

Red
Green * * * *

Tip : Why is My Junos Device Alarm LED Status Red?

The front panel alarm indicators can be either Red or Yellow as seen
from the front panel or the output of show chassis craft-interface
(discussed in the previous Tip).

C	Suppose you saw that your Alarm LED is red. Issue either the show
system alarm command or the show chassis alarm command.

One reason for chassis alarm is that the management port is not
connected. To clear this alarm, if you are not actually using the man-
agement port, merely execute the following command: root@Junos#set
chassis alarm management-ethernet link-down ignore. And one

	 54	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

reason for the system alarm is that there is no rescue configuration
created. To fix this alarm, merely save a rescue configuration: root@
Junos#run request system configuration rescue save.

Let’s illustrate this:

root@Junos#run request system configuration rescue save

lab@M7i-R106> show system alarms
1 alarms currently active
Alarm time Class Description
2011-05-03 20:11:27 UTC Major PEM 1 Not OK

The output above does not cite the rescue configuration, because that
file is present, as seen in the output of show system commit:

lab@M7i-R106> show system commit
0 2011-05-17 12:23:15 UTC by lab via cli
1 2011-05-17 12:16:08 UTC by lab via cli
2 2011-05-17 12:15:26 UTC by lab via cli
.
.
.output truncated
.
49 2011-03-14 19:14:02 UTC by lab via cli
rescue 2011-05-05 18:26:22 UTC by lab via cli <-- rescue config

Template: Pipe Commands

The Junos OS contains a number of useful features that allow you to
control the output you see when you run commands. They are called
pipe commands, and you can even combine multiple pipe commands
together.

If you’ve been randomly reading this book, you probably have come
across several tips and techniques incorporating pipe commands. Well
here, the editors have combined the many pipe command submissions
into one template for you.

Regular Expressions

Both the match and except pipe commands use regular expressions, so
we need to start with a quick tutorial on regular expressions.

C	For the match and except pipe commands, the Junos CLI uses a kind of
matching syntax called regular expressions. Regular expressions are
composed of elements, grouping operators, and repetition operators.

	 Template:	Pipe	Commands	 55

To match a fixed string of text, you simply specify that string of text.
Here, the pipe looks for every phrase in the configuration that contains
the word address:

root@srxA-1> show configuration | match address
 address 10.210.14.136/26;

Note that the Junos CLI interprets all regular expressions as case-
insensitive. So, the regular expression SYSTEM will match system,
even though the case differs.

You can also put lists of characters that should match within square
brackets. For example, [0356A] will match 0, 3, 5, 6, or A. You can
also include ranges of characters. For example, [A-Z] will match any
letter. Here, the pipe command will match any interface on FPC 0:

root@srxA-1> show configuration | match "-0/[0-9]/"
 ge-0/0/0 {

You can also specify that you wish to match any character. The period
(.) is a special character that matches any character. (It is very similar
to the ? in wildcard expressions.) For example, if you use the match
pipe command to look for lines in the configuration that match sys.em,
you can see that the word system matches this regular expression,
because the “t” in system matches the “ . ” in the regular expression:

root@srxA-1> show configuration | match sys.em
system {

By default, a regular expression looks for a match anywhere on a line.
If you want to change this behavior, you can use special characters to
match the beginning (̂) or end ($) of a line. You can then specify
your match relative to that location. For example, this regular expres-
sion looks for lines that begin with the word Physical:

root@srxA-1> show interfaces | match ̂ Physical
Physical interface: ge-0/0/0, Enabled, Physical link is Up
Physical interface: gr-0/0/0, Enabled, Physical link is Up
Physical interface: ip-0/0/0, Enabled, Physical link is Up
Physical interface: lsq-0/0/0, Enabled, Physical link is Up
Physical interface: lt-0/0/0, Enabled, Physical link is Up
Physical interface: mt-0/0/0, Enabled, Physical link is Up
Physical interface: sp-0/0/0, Enabled, Physical link is Up
Physical interface: ge-0/0/1, Enabled, Physical link is Up
Physical interface: ge-0/0/2, Enabled, Physical link is Up
Physical interface: ge-0/0/3, Enabled, Physical link is Up
Physical interface: ge-0/0/4, Enabled, Physical link is Up
Physical interface: ge-0/0/5, Enabled, Physical link is Up
Physical interface: ge-0/0/6, Enabled, Physical link is Up
Physical interface: ge-0/0/7, Enabled, Physical link is Up

	 56	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Physical interface: ge-0/0/8, Enabled, Physical link is Up
Physical interface: ge-0/0/9, Enabled, Physical link is Up
Physical interface: ge-0/0/10, Enabled, Physical link is Up
Physical interface: ge-0/0/11, Enabled, Physical link is Up
Physical interface: ge-0/0/12, Enabled, Physical link is Down
Physical interface: ge-0/0/13, Enabled, Physical link is Down
Physical interface: ge-0/0/14, Enabled, Physical link is Up
Physical interface: ge-0/0/15, Enabled, Physical link is Up
Physical interface: fxp2, Enabled, Physical link is Up
Physical interface: gre, Enabled, Physical link is Up
Physical interface: ipip, Enabled, Physical link is Up
Physical interface: lo0, Enabled, Physical link is Up
Physical interface: lsi, Enabled, Physical link is Up
Physical interface: mtun, Enabled, Physical link is Up
Physical interface: pimd, Enabled, Physical link is Up
Physical interface: pime, Enabled, Physical link is Up
Physical interface: pp0, Enabled, Physical link is Up
Physical interface: ppd0, Enabled, Physical link is Up
Physical interface: ppe0, Enabled, Physical link is Up
Physical interface: st0, Enabled, Physical link is Up
Physical interface: tap, Enabled, Physical link is Up
Physical interface: vlan, Enabled, Physical link is Up

You can use repetition arguments to specify that a particular item
should be matched a particular number of times. An asterisk (*) tells
the software to match zero or more instances of the immediately
preceding element, the question-mark (?) tells the software to match
zero or one instances of the immediately preceding element, and the
plus sign (+) tells the software to match one or more instances of the
immediately preceding element. For example, sys*tem will match
sytem (zero s’s), system (one s), and sysssssssstem (more than one s).
For another example, sys?tem will match sytem (zero s’s) and system
(one s), but not sysssssssstem (more than one s). Finally, sys+tem will
match system (one s) and sysssssssstem (more than one s), but not
sytem (zero s’s).

A very common use of the asterisk (*) repetition operator occurs with
the period (.). The regular expression .* tells the software to match
zero or more instances of any character. In other words, this will
match any string, including an empty string.

You can use a logical or operator to specify that a match occurs if
either condition is met. The pipe (|) is the logical or operator. (Be-
cause the pipe also has special significance in the Junos CLI, you must
enclose a regular expression in quotation marks if it includes a pipe as
part of the regular expression itself.) Here, the | operator is used to
match either the address or neighbor statements:

	 Template:	Pipe	Commands	 57

root@srxA-1> show configuration | match "address|neighbor"
address 10.210.14.136/26;
neighbor 10.210.14.188;

You can get a logical and operation with match and except simply by
piping the results to another match or except operation. For example,
show bgp summary | exclude Connect | exclude 1234 excludes any
session in the Connect state, as well as any session with AS 1234.

You can use parentheses to group items in regular expressions. Once
you do this, the parentheses-enclosed match is treated like a single
element. You can use logical operators between these elements or you
can use repetition operators on these elements. In this example, the
expression looks for all Gigabit Ethernet interfaces, and all other
interfaces that are Up:

root@srxA-1> show interfaces | match "(̂ Physical.* ge-)|(̂ Physical.*Up$)"
Physical interface: ge-0/0/0, Enabled, Physical link is Up
Physical interface: gr-0/0/0, Enabled, Physical link is Up
Physical interface: ip-0/0/0, Enabled, Physical link is Up
Physical interface: lsq-0/0/0, Enabled, Physical link is Up
Physical interface: lt-0/0/0, Enabled, Physical link is Up
Physical interface: mt-0/0/0, Enabled, Physical link is Up
Physical interface: sp-0/0/0, Enabled, Physical link is Up
Physical interface: ge-0/0/1, Enabled, Physical link is Up
Physical interface: ge-0/0/2, Enabled, Physical link is Up
Physical interface: ge-0/0/3, Enabled, Physical link is Up
Physical interface: ge-0/0/4, Enabled, Physical link is Up
Physical interface: ge-0/0/5, Enabled, Physical link is Up
Physical interface: ge-0/0/6, Enabled, Physical link is Up
Physical interface: ge-0/0/7, Enabled, Physical link is Up
Physical interface: ge-0/0/8, Enabled, Physical link is Up
Physical interface: ge-0/0/9, Enabled, Physical link is Up
Physical interface: ge-0/0/10, Enabled, Physical link is Up
Physical interface: ge-0/0/11, Enabled, Physical link is Up
Physical interface: ge-0/0/12, Enabled, Physical link is Down
Physical interface: ge-0/0/13, Enabled, Physical link is Down
Physical interface: ge-0/0/14, Enabled, Physical link is Up
Physical interface: ge-0/0/15, Enabled, Physical link is Up
Physical interface: fxp2, Enabled, Physical link is Up
Physical interface: gre, Enabled, Physical link is Up
Physical interface: ipip, Enabled, Physical link is Up
Physical interface: lo0, Enabled, Physical link is Up
Physical interface: lsi, Enabled, Physical link is Up
Physical interface: mtun, Enabled, Physical link is Up
Physical interface: pimd, Enabled, Physical link is Up
Physical interface: pime, Enabled, Physical link is Up
Physical interface: pp0, Enabled, Physical link is Up
Physical interface: ppd0, Enabled, Physical link is Up
Physical interface: ppe0, Enabled, Physical link is Up

	 58	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Physical interface: st0, Enabled, Physical link is Up
Physical interface: tap, Enabled, Physical link is Up
Physical interface: vlan, Enabled, Physical link is Up

If you want to match on any of the characters that have special
meaning in regular expressions, you can precede them with a backs-
lash (\). For example, show configuration | match \[displays any
line in the configuration that contains a left square bracket. Backs-
lashes are especially useful with IP addresses. Because the (.) has
special meaning in regular expressions, you should precede any literal
(.) in an IP address with a backslash. Otherwise, you could match
things you did not intend.

You’ll see further examples in this template as you review the match
and except operators.

Regular expressions are also used with the replace operator. There,
the match is only on the user-defined string. For example, to match a
BGP session with 10.210.38.12, you could use the regular expression
1̂0\.210\.38\.12$. However, with the match and except pipe operators,

the match occurs on the entire line, so this same regular expression
would not work with those commands; rather, with the match and
except pipe commands, you would want to match on neighbor
10\.210\.38\.12(|;).

Excluding Lines of Output

You can use the except pipe command to show all lines of output
except those that match a regular expression.

As a specific example of this, you can use the except pipe command to
eliminate the comments added when you are using the display inher-
itance pipe command:

[edit]
lab@srxA-2# show interfaces | display inheritance
ge-0/0/3 {
 unit 0 {
 family inet {
 address 172.18.2.2/30;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
}

	 Template:	Pipe	Commands	 59

ge-0/0/4 {
 vlan-tagging;
 unit 102 {
 vlan-id 102;
 family inet {
 address 172.20.102.1/24;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
 unit 202 {
 vlan-id 202;
 family inet {
 address 172.20.202.1/24;
 }
 ##
 ## 'mpls' was inherited from group 'mpls'
 ##
 family mpls;
 }
}

[edit]
lab@srxA-2# show interfaces | display inheritance | except ##
ge-0/0/3 {
 unit 0 {
 family inet {
 address 172.18.2.2/30;
 }
 family mpls;
 }
}
ge-0/0/4 {
 vlan-tagging;
 unit 102 {
 vlan-id 102;
 family inet {
 address 172.20.102.1/24;
 }
 family mpls;
 }
 unit 202 {
 vlan-id 202;
 family inet {
 address 172.20.202.1/24;
 }
 family mpls;
 }
}

	 60	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Matching Output

You can use the match pipe command to show just the output that is
most relevant for your purposes. The match command takes a regular
expression as an argument.

For one example, a user may not want to sift through three pages of
output to see queue drops in all forwarding classes on an interface.
With this command you can get all the drop statistics in one page:

lab@M7i-R110> show interfaces queue fe-0/0/1 | match "Physical|Queue|Drop"
Physical interface: fe-0/0/1, Enabled, Physical link is Up
Egress queues: 4 supported, 4 in use
Queue: 0, Forwarding classes: best-effort
 Queued:
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 1, Forwarding classes: expedited-forwarding
 Queued:
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 2, Forwarding classes: assured-forwarding
 Queued:
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps
Queue: 3, Forwarding classes: network-control
 Queued:
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 RED-dropped bytes : 0 0 bps

In this example, you can quickly see the input and output rates on
every interface. This is quite useful for tracking down Layer-2 loops or
other conditions where an interface is transmitting or receiving large
amounts of traffic:

> show interfaces | match "(̂ Physical|bps|pps)"

One helpful user offered one additional tip about the match pipe
command, which he said was handy for UNIX junkies:

One can use grep keyword in place of the match keyword.

	 Tip:	Show	Version	and	Haiku	 61

No Paging

There are some cases where it is better to temporarily disable the
software’s automatic paging feature. You can do this by adding the
no-more pipe command to a command. (You can also combine this
with other pipe commands.)

This is useful when capturing data and works nicely with terminal
programs that have a logging feature to capture the output.

The temporary disablement can be especially useful in two cases.
First, the automatic paging feature adds line breaks after each line
displayed on the screen. If the output contains long lines, this can add
extraneous line breaks. If you are trying to copy parts of the configu-
ration from one Junos device to another, these extra line breaks can
cause problems. So, you should use the no-more pipe command to
display the configuration when you are going to copy it from one
router and paste it into another.

Second, disabling the automatic paging feature can be useful when the
CLI is especially slow (for example, when displaying large amounts of
data on the console) and you are trying to gather troubleshooting
information. You can use the no-more command to cause the CLI to
display information as quickly as possible.

Tip: Show Version and Haiku

This one probably doesn’t qualify as a tip... although most people in
Juniper know about it, all us newbies don’t. Besides, someday it will
be fun to see if it’s still there in Junos version 67.1.

C	Junos is poetry.

root@srxA-1> show version and haiku
Hostname: srxA-1
Model: srx240h-poe
JUNOS Software Release [10.4R1.9]

 Glorious morning
 Well beyond what I deserve
 Stretch myself and grow

What can we say? CLI tricks and hidden commands are always
interesting… especially when they serve almost no purpose.

	 62	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: CLI History Search

C	The Emacs shortcuts available for Junos are very powerful, and one not
widely known is CTRL-R. This shortcut accesses the pool of previously-
issued commands and lets you issue a search of sorts. For instance, let’s
say about a half-hour ago you issued the run show security ipsec secu-
rity-associations command, and would rather not up-arrow fifteen
times to find it again.

First, press CTRL-R, and note that it lists a history search.

Next, type the letter ‘r’. The buffer automatically starts auto-completing
based on commands issued that start with the letter ‘r’. After you get ‘ru’
typed in, the command is listed and all you have to do is press Enter to
execute! Here’s the proof:

[edit]
(history search) '':

[edit]
(history search) 'r': run telnet 10.10.10.10

[edit]
(history search) 'ru': run show security ipsec security-associations

[edit]
lab@srxA-2# run show security ipsec security-associations
 Total active tunnels: 1
 ID Gateway Port Algorithm SPI Life:sec/kb Mon vsys
 <131073 172.18.1.2 500 ESP:3des/md5 fd8d9f55 2442/ unlim - 0
 >131073 172.18.1.2 500 ESP:3des/md5 b3649bb5 2442/ unlim - 0
 <131073 172.18.1.2 500 ESP:3des/md5 d9bf613c 2472/ unlim - 0
 >131073 172.18.1.2 500 ESP:3des/md5 f4ebcd7a 2472/ unlim - 0

Tip: Unable to Access a Standby SRX?

C	If you’re unable to access a standby SRX, it’s probably due to the fact
that the backup/standby SRX’s do not have a routing daemon running
(rdp). As a result, static routes must be used, but not just any static route
will do. To configure routing when the rdp daemon isn’t running you
must configure a backup-router.

[edit]
juniper@SRX5800#set system backup-router 10.10.10.1 [edit]
juniper@SRX5800#set system backup-router destination 172.16.0.0/16

This will make the 172.16/16 network reachable at all times.

	 Tip:	How	to	Chat	Inside	a	Router	Telnet	Session	with	a	Connected	User	 63

Tip: How to Chat Inside a Router Telnet Session with a Connected
User

If you ever want to communicate with another user logged into the
system, this tip is for you. Do it with a request message command. A
common use of this command is with the all option, typically when
you wish to inform all users that the system will be halted in five or ten
minutes.

C	A simple example of talking inside a router session, is to say hi to all
users:

[edit] regress@bronica# run request message all message "hi" <-- note use of “run” option
Broadcast Message from regress@bronica
(/dev/ttyp0) at 1:27 PST...
hi
[edit] regress@bronica#

If you want to chat with other users connected inside the router, the
request message command also works well, just by identifying the
specific user with whom you want to chat. Use a show system users
command to identify the destined user.

lab@M7i-R106> show system users
12:49PM up 13 days, 16:41, 1 user, load averages: 0.00, 0.01, 0.04
USER TTY FROM LOGIN@ IDLE WHAT
lab p0 172.23.1.252 12:31PM - -cli (cli)

Now send your chat:

lab@M7i-R106> request message user lab message "Did you check the redundant power
supply?"
Message from lab@M7i-R106 on ttyp0 at 12:50 ... <-- source user, time, and terminal id
Did you check the redundant power suppl <-- message
EOF <-- End of file/message marker

Note that you can also identify the message recipient by terminal ID,
in case you share a single login session amongst several users (like in a
lab environment, because you would never share a common login ID
in a production environment). Just use the keyword terminal in
addition to the keyword user and provide the TTY id from the output
of show system users:

lab@M7i-R106> request message terminal p0 user lab message "this message is to terminal
p0"

	 64	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Loading a Junos Factory Default Configuration

C	Frequently in lab environments or for equipment qualification testing,
you need to take the equipment back to the factory default. Using
Junos, you have a variety of methods:

Method One (For all Junos devices):

Step 1. Configure the load factory-default option:

root@host# load factory-default

Step 2. Configure a root-authentication plain-text-password.

Note that you must have a valid root password configured. You must
type the same password twice.

root@host# set system root-authentication plain-text-password (Press Enter)
New password: Retype new password:

Step 3. Commit the configuration change.

root@host#commit

Step 4. Reboot the system. The rebooted system will boot up as
amnesiac (meaning it is in factory default)—however, the root authen-
tication password is still set!

Wed May 18 04:08:36 UTC 2011
Amnesiac (ttyu0)
login:

Method Two (For EX Series switches with LCD):

From LCD , under the Maintenance Tab , choose factory-default. After
that you will be able to access CLI as root without a password. To be
able to commit any changes you should first set a root password:

root@host# set system root-authentication plain-text-password (Press Enter)
New password:
Retype new password:

Method Three (For SRX Devices):

You can use the Reset Config button on the front panel of the SRX to
reset the device to its factory default configuration. Press and hold the
Reset Config button on the front panel of the SRX device (using any
handy paperclip) for at least 15 seconds, until the Status LED glows
amber.

	 Tip:	Restart	a	Software	Process	 65

This is the display you see in the console window:

--- JUNOS 10.4R1.9 built 2010-12-04 10:20:16 UTC

Broadcast Message from root@Student-18
 (no tty) at 4:26 UTC...

Config button pressed
Committing factory default configuration

Power off the system and reboot it. You will come up in factory
default, with no root password.

Tip: Restart a Software Process

Restarting a process is equivalent to a UNIX kill command. By
default, the process is signaled with a -15 and is allowed to restart
gracefully. You can signal an immediate and unconditional kill with
the immediately keyword, which equates to a kill -9. Once a process is
killed, the Junos inet process will automatically restart it, unless it
repeatedly dies and thrashing is declared, in which case the process is
not restarted.

You should contact JTAC and open a support case if you can repro-
duce a situation where normal operation is only achieved after killing
a process.

C	Junos is modular in nature and while generally quite robust and stable,
there are times when a specific set of actions or configuration steps can
result in unexpected operation. When all looks right but things are just
not working as you expect, consider restarting the related process
before moving on to the significantly more drastic action of a reboot.

The CLI displays a list of processes that can be restarted:

user@host> restart ?
Possible completions:
 adaptive-services Adaptive services process
 application-identification Application-identification process
 audit-process Audit process
 auto-configuration Interface Auto-configuration
 chassis-control Chassis control process
 class-of-service Class-of-service process
 database-replication Database Replication process
 dhcp-service Dynamic Host Configuration Protocol process
 diameter-service Diameter process

	 66	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

disk-monitoring Disk monitoring process
. . .

The following processes do a lot of work in their respective areas:

routing
sflow-service
igmp-snooping
snmp
dhcp
ethernet-switching

When one of their functions appears broken consider performing a
process restart. For example, a stuck EBGP peer may recover from a
restart routing, which disrupts all routing protocols and peers, by
the way, but is unlikely to be helped by a restart SNMP, for example.

Tip: Remote Wireshark Analysis

The write-file argument to the monitor traffic command is hidden
due to concerns that a user may leave a capture running for so long
that one could run out of /var space, leading to all sorts of various
issues. It’s a valid concern, so watch out. In the past, filtering based on
protocol expression, did not work on the CLI, but would work from a
saved capture file. While this issue has since been remedied, many find
that saved capture files are useful: this tip allows you to avoid having
to go to a root shell to run tcpdump along with its arguments in order
to save a capture file.

C	Many people prefer a modern GUI-based packet decode with easy-to-
use filtering rather than the old, stodgy tcpdump output provided by
the CLI and shell. You can use a hidden write-file argument to the
monitor traffic command to write matching output to a local pcap
formatted file. You can then transfer the file to a PC or UNIX host to
display with an analyzer, such as Wireshark.

This example filters traffic based on the OSPF protocol expression and
writes the trace output to a file called ospf.cap, which is then verified to
exist with sane pcap contents by reading the file back in, using the
equally hidden read-file argument:

user@host# monitor traffic interface ge-0/2/3 matching "proto 89" write-file ospf.cap
size 1200 detail
Address resolution is ON. Use <no-resolve> to avoid any reverse lookup delay.
Address resolution timeout is 4s.
Listening on ge-0/2/3, capture size 1200 bytes

	 Tip:	Remote	Wireshark/TShark	Analysis	Via	SSH	 67

^C
23 packets received by filter
0 packets dropped by kernel

user@host# file list ospf.cap
/var/home/regress/ospf.cap

user@host# monitor traffic read-file ospf.cap
Reverse lookup for 172.16.1.98 failed (check DNS reachability).
Other reverse lookup failures will not be reported.
Use <no-resolve> to avoid reverse lookups on IP addresses.

15:17:48.201521 Out IP 172.16.1.98 > OSPF-ALL.MCAST.NET: OSPFv2, Hello, length 48
15:17:48.916604 In IP 172.16.1.97 > OSPF-ALL.MCAST.NET: OSPFv2, Hello, length 48

Tip: Remote Wireshark/TShark Analysis Via SSH

The previous tip discussed the use of the monitor traffic command
and how you can write the output to a file (using a hidden argument)
for either local analysis via tcpdump/monitor traffic, or to transfer to a
remote machine for analysis with a commercial/GUI-based protocol
analyzer. This tip shows you how to get the best of both worlds:
external protocol decode, text-based or GUI, via ssh without having
to explicitly save results to a file which then needs to be transferred to
the analysis host.

C	Use this tip to get better protocol decodes when you have access to a
root shell on a SSH-enabled version of Junos, with access to a remote
SSH-enabled UNIX machine that has the TShark or Wireshark
analysis programs installed. Pretty cool, huh?

user@host> start shell
% su
Password:
root@host%

root@host% tcpdump -c 1 -i xe-6/0/0 -n -s 2000 -w - -l "proto ospf" | ssh user@unix-
host"(/usr/sbin/tshark -nVli -)"
Address resolution is OFF.
Listening on xe-6/0/0, capture size 2000 bytes

user@unix-host's password:
Capturing on -
Frame 1 (120 bytes on wire, 120 bytes captured)
 Arrival Time: Mar 25, 2011 10:04:19.739371000
 [Time delta from previous captured frame: 0.000000000 seconds]
 [Time delta from previous displayed frame: 0.000000000 seconds]

	 68	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 [Time since reference or first frame: 0.000000000 seconds]
 Frame Number: 1
 Frame Length: 120 bytes
 Capture Length: 120 bytes
 [Frame is marked: False]
 [Protocols in frame: juniper:eth:ip:ospf]
Juniper Ethernet
 Magic-Number: 0x4d4743
 Direction: Out
 L2-header: Present
 Extension(s) Total length: 16
 Device Media Type Extension TLV #3, length: 1
 Device Media Type: Ethernet (1)
 Logical Interface Encapsulation Extension TLV #6, length: 1
 Logical Interface Encapsulation: Ethernet (14)
 Device Interface Index Extension TLV #1, length: 2
 Device Interface Index: 273
 Logical Interface Index Extension TLV #4, length: 4
 Logical Interface Index: 78
 [Payload Type: Ethernet]
Ethernet II, Src: 00:21:59:fd:3b:f4 (00:21:59:fd:3b:f4), Dst: 01:00:5e:00:00:05
(01:00:5e:00:00:05)
 Destination: 01:00:5e:00:00:05 (01:00:5e:00:00:05)
 Address: 01:00:5e:00:00:05 (01:00:5e:00:00:05)
 1 = IG bit: Group address (multicast/broadcast)
 0. = LG bit: Globally unique address (factory default)
 Source: 00:21:59:fd:3b:f4 (00:21:59:fd:3b:f4)
 Address: 00:21:59:fd:3b:f4 (00:21:59:fd:3b:f4)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory default)
 Type: IP (0x0800)
Internet Protocol, Src: 201.0.1.1 (201.0.1.1), Dst: 224.0.0.5 (224.0.0.5)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0xc0 (DSCP 0x30: Class Selector 6; ECN: 0x00)
 1100 00.. = Differentiated Services Codepoint: Class Selector 6 (0x30)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 84
 Identification: 0xcc8f (52367)
 Flags: 0x00
 0.. = Reserved bit: Not Set
 .0. = Don't fragment: Not Set
 ..0 = More fragments: Not Set
 Fragment offset: 0
 Time to live: 1
 Protocol: OSPF IGP (0x59)
 Header checksum: 0x41fb [correct]
 [Good: True]
 [Bad : False]
 Source: 201.0.1.1 (201.0.1.1)

	 Tip:	Remote	Wireshark/TShark	Analysis	Via	SSH	 69

 Destination: 224.0.0.5 (224.0.0.5)
Open Shortest Path First
 OSPF Header
 OSPF Version: 2
 Message Type: Hello Packet (1)
 Packet Length: 48
 Source OSPF Router: 192.168.1.10 (192.168.1.10)
 Area ID: 0.0.0.0 (Backbone)
 Packet Checksum: 0x0000 (none)
 Auth Type: Cryptographic
 Auth Key ID: 1
 Auth Data Length: 16
 Auth Crypto Sequence Number: 0x4d8ccb13
 Auth Data: C24D48FF389067B88AB638F6DB8770E5
 OSPF Hello Packet
 Network Mask: 255.255.255.252
 Hello Interval: 10 seconds
 Options: 0x02 (E)
 0... = DN: DN-bit is NOT set
 .0.. = O: O-bit is NOT set
 ..0. = DC: Demand circuits are NOT supported
 ...0 = L: The packet does NOT contain LLS data block
 0... = NP: Nssa is NOT supported
 0.. = MC: NOT multicast capable
 1. = E: ExternalRoutingCapability
 Router Priority: 128
 Router Dead Interval: 40 seconds
 Designated Router: 201.0.1.2
 Backup Designated Router: 201.0.1.1
 Active Neighbor: 192.168.1.11

1 packet captured
root@host%

For tcpdump/wireshark/tshark options see the relevant manual pages.
This example sets a capture length of 1 viz the –c flag, and you need
the –w write file option, which in this case is set to STD output for the
magic to work. Note that Win32 Wireshark does not support captur-
ing from pipes or stdin: UNIX required.

For those with a GUI bent, you can use this form of the command to
open a Wireshark window on the specified Xwindows display. Despite
the error reported from dumpcap, this was found to work as expected;
a Control-C was needed to terminate, however:

root@host% tcpdump -c 1 -i xe-6/0/0 -n -s 2000 -w - -l "proto ospf" | ssh user@unix-host
"(/usr/sbin/wireshark --display=:1.0 -knSli -)"
Address resolution is OFF.
Listening on xe-6/0/0, capture size 2000 bytes

user@unix-host’s password:

	 70	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

dumpcap: There are no interfaces on which a capture can be done
<Wireshark window opens at Unix host on the specified Xwindows display with captured
packet decode>
^CKilled by signal 2.
root@host%

Tip: Emacs Shortcuts

These are common shortcuts that we suspect many Junos power users
use on a regular basis, but hey, chances are they’ve been pushed aside
by other Junos memorabilia.

C	Using key combinations at the command-line can save you time:

•	 CTRL-A	takes	you	to	the	beginning	of	the	command	line

•	 CTRL-E	takes	you	to	the	end	of	the	command	line

•	 CTRL-W	deletes	backwards	to	the	previous	space

•	 CTRL-U	deletes	the	entire	command	line

•	 CTRL-L	redraws	the	command	line	(in	case	it	has	been	interrupted	
by messages, etc.)

Template: 97 CLI Tips

One of the Junos developer gurus contributed 97 CLI tips. While some
are covered elsewhere, they are duplicated here in their entirety
because they make such a handy reference.

C	Use configuration groups to represent common pieces of configuration
and to reduce the size of your configuration file.

Use the re0 and re1 configuration groups to restrict configuration to a
particular routing engine.

Use configuration groups to group related configuration statements.

Use configuration groups to supply default values.

Use the display inheritance CLI pipe to show where configuration
groups are inherited.

In configuration mode, use the display detail CLI pipe to show more
information about the configured values.

	 Template:	97	CLI	Tips	 71

In configuration mode, use the compare pipe to display differences
between the candidate configuration and the committed configuration.

Use CTRL-R in the CLI to search the command line history for a
matching command.

Use ESC-/ in the CLI to expand strings into matching words from the
command line history.

Use the annotate command to add comments to your configuration.

Use # in the beginning of a line in command scripts to cause the rest of
the line to be ignored.

Use help syslog to show more information about syslog messages.

Use help apropos to show commands related to a topic.

Use help topic to display Junos documentation on a topic.

Use help reference to display the Junos reference documentation on a
topic.

Use CLI pipes to display more information about commands, control
the automore feature, save CLI output, and more.

Use the display xml CLI pipe to show the equivalent XML output for
any CLI command.

Use the no-more CLI pipe to disable the CLI’s more capability and let
the multiple pages of output scroll without stopping.

Use the match CLI pipe to display lines matching a pattern.

Use the except CLI pipe to display lines that do not match a pattern.

Use the save CLI pipe to save output to a local or remote file.

Use the count CLI pipe to count the number of lines in the output.

Use multiple CLI pipes to build complex commands. For example:
show interfaces | match Description | count.

When displaying a subset of lines using the match or except CLI pipes,
type 'C' at the more prompt to display all lines.

Type 'G' at the more prompt to jump to the bottom of the output.

Type 'g' at the more prompt to jump to the top of the output.

Type 'b' at the more prompt to go backwards one page.

	 72	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Type '/' at the more prompt to search for a string in the rest of the
output.

Type '?' at the more prompt to search backwards for a string.

Type 's' at the more prompt to save the current display to a file or url.

Type 'N' at the more prompt to turn the more off for the rest of the
current command.

Type 'h' at the more prompt to display help information.

Use the hold CLI pipe to hold the cli at the more prompt at the bottom
of the output. This is useful when displaying less than one screen of
data.

Type 'm' at the more prompt to give additional regular expressions
against which to match output.

Type 'e' at the more prompt to give additional regular expressions
against which to exclude output.

When hunting through large log files, use the 'm' and 'e' keys to
iteratively refine your search by discarding irrelevant lines.

Use the TAB key to autocomplete interface names in operational mode.

Use the TAB key to autocomplete CLI commands.

Use the rollback command to restore previous configurations.

In configuration mode, type rollback ? to see when previous configu-
rations were committed, and by whom.

Use the rollback command to discard uncommitted changes by
reloading the most recently committed configuration.

In configuration mode, the status command displays who is editing
the configuration and where in the hierarchy they are working.

Use configure private to edit a private copy of the configuration, so
your work will be unaffected by others editing the configuration.

Use configure exclusive to ensure you are the only one editing the
configuration. Other users are blocked from making changes.

In configuration mode, use the copy command to replicate configura-
tion statements.

In configuration mode, use the insert command to insert a new
configuration into existing lists.

	 Template:	97	CLI	Tips	 73

In configuration mode, use the rename command to give configuration
a new identifier. For example, rename interface fe-0/0/1 to fe-
0/0/2.

In configuration mode, the delete command with no arguments will
delete the entire configuration hierarchy under the current location.

Use commit check to check configuration for correctness without
making it active.

In configuration mode, use quit configuration-mode to exit configura-
tion mode from any level of the hierarchy.

Use a URL to load configuration using ftp. For example, load merge
ftp://user:password@host/filename.

Use a URL to load configuration using http. For example, load merge
http://user:password@host/filename.

Use a URL to save output using ftp. For example, show route summary
| save ftp://user:password@host/filename.

Use user@host: syntax to save output using scp. For example, show
route summary | save user@host:filename.

Use a: to save output to the PCMCIA card. For example, show route
summary | save a:filename.

Use b: to save output to the second (configuration) partition on the
PCMCIA card. For example, show configuration | save b:filename.

Use re0: and re1: to save output to the other routing engine. For
example, show route summary | save re1:filename.

On EX-series platforms in a Virtual Chassis configuration, you can use
fpc0:, fpc1:, fpc2:, etc. to save files to the appropriate member switch.

In configuration mode, the [edit] banner displays the current location
in the configuration hierarchy.

Use commit confirmed to ensure that configuration changes do not
disconnect the router from the network.

Use the monitor command to monitor system log files for changes.

Use the monitor interface command to display real-time interface
statistics.

Use the request system logout command to forcibly log a user out of
the router.

	 74	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Use request system snapshot to make a snapshot of the running
system on the hard disk drive (or other alternate media).

Use the deactivate command to mark configuration statements
inactive. The statements stay in the configuration, but are effectively
commented out.

Use the activate command to clear the inactive marker from configu-
ration statements. This is the opposite of the deactivate command.

Use top to get to the top of the configuration hierarchy. Use up to move
up one level, and up <count> to move up a number of levels.

Use top <cmd> to issue a command at the top of the configuration
hierarchy without moving the current edit point. You can use up <n>
<cmd> also.

Use top edit <path> to move to a configuration statement relative to
the top of the hierarchy.

Use up <n> edit <path> to move to a configuration relative to the
statement <n> levels above the current edit point.

Use commit at <time> to perform a commit automatically at a desig-
nated time. You can use clear commit to cancel a scheduled commit.

Use commit sync to keep configuration files synchronized between
master and slave routing engines.

Use commit and-quit to exit configuration mode after the commit has
succeeded. If the commit fails you are left in configuration mode.

Use commit comment <text> to add a log message to this commit.

Use load <style> terminal to load statements from the terminal using
cut-n-paste. Use Control-D to mark the end of data.

Use load patch to load structured patch files that follow the unified
patch style; show | compare generates this style.

Use show configuration | match { to see a quick overview of your
configuration hierarchy. Use 'C' at the more prompt to clear the match.

Use request system software validate to validate the incoming
software against the current configuration without impacting the
running system.

Use request message user <foo> to send a text message to one user.
Use request message all to send to all current users.

	 Template:	97	CLI	Tips	 75

Use request message CLI pipe to replicate output of show commands
to other users.

Use the resolve CLI pipe to resolve IP addresses into hostnames.

In operational mode, use show cli history to view previously execut-
ed commands.

Use run <command> to run operational mode commands from configu-
ration mode.

In configuration mode, use run show cli history to view previously
executed commands.

Use show configuration | except SECRET-DATA to exclude configura-
tion statements tagged with the line comment marking them as
sensitive.

Use the apply-groups statement at any level of the configuration
hierarchy to inherit configuration statements from a configuration
group.

Use the apply-groups-except statement at any level except the top
level of the configuration hierarchy to turn off inheritance of configu-
ration statements from configuration groups.

Use the apply-path statement to define a prefix list containing prefixes
extracted from any configuration path.

Use the help tip cli to see more CLI tips.

Use the configuration statement [system login class <name> login-
tip] to turn on CLI tips for a login class.

Use wildcarded identifiers in configuration groups to allow one
statement to be applied in multiple locations.

Use the match and except CLI pipelines with the monitor start
command to automatically filter logging output.

Use Escape-Q to toggle log output on the current terminal. Excessive
log output can make typing difficult.

Use the wildcard delete command in configuration mode to delete a
number of interfaces using a regular expression. The regular expres-
sion is used to match the interface names.

Use load merge <filename> with relative option to avoid having to
type the complete configuration hierarchy.

	 76	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Include the configuration statement at the [system archival] hierar-
chy level to have the router automatically copy configuration files to a
FTP or SCP server.

Use M-. to insert last word of the previous command. Repeat M-. to
scroll through last word of each command in the history. To do the
same for Nth word, precede M-. with M-n.

One quick note: In this tip, the submitter uses the notation M-x. This
notation is telling you to hold down your meta key and press the x key.
What is your meta key? If you are an Emacs power-user, you already
know how to handle this. For most people with Windows PCs, you
can press and release the Escape key, and then press the x key. On
some (or most?) Sun keyboards, you may use the diamond key as the
meta key. For other platforms, well, you can submit your own tip for
the next edition of this book. ;)

Use the replace command in configuration mode to globally replace a
pattern with a new character string. The pattern can be a regular
expression.

As noted elsewhere, the regular expression matches just the user-sup-
plied identifier and not surrounding keywords. (So, ̂ 10\.210\.38\.12$
would match the neighbor IP address 10.210.38.12.)

Technique: Port Mirroring on EX Switches

Configuring port mirroring on EX switches is a bit more complex
than the one-line port monitor statement that users of the equivalent
SPAN feature on IOS switches may be familiar with. The need for two
monitor ports for non-blocking full duplex might also catch such users
off-guard.

C	Port mirroring is used on Layer 2 switches to allow the redirection of
desired traffic to a monitor port for protocol/security analysis.

Note that in Junos if you want to do line-rate monitoring then you’ll
need to configure two monitors, one from input egress to a first output
port, and a second from input ingress to a second output port, where
Junos defines the following as:

n	input: the port being monitored

n	input egress: traffic leaving the switch

	 Technique:	Port	Mirroring	on	EX	Switches	 77

n	input ingress: traffic entering the switch

n	output: the port doing the monitoring

Use these commands to monitor a single port (ge-0/0/0 unit 0) in both
transmit and receive directions (Full Duplex) to a single, and therefore
2X oversubscribed, output port (ge-0/0/10 unit 0):

user@host> configure
Entering configuration mode

[edit]
user@host# edit ethernet-switching-options analyzer foo

[edit ethernet-switching-options analyzer foo]
user@host# set input egress interface ge-0/0/0.0

[edit ethernet-switching-options analyzer foo]
user@host# set input ingress interface ge-0/0/0.0

[edit ethernet-switching-options analyzer foo]
user@host# set output interface ge-0/0/10.0

[edit ethernet-switching-options analyzer foo]
user@host# show
input {
 ingress {
 interface ge-0/0/0.0;
 }
 egress {
 interface ge-0/0/0.0;
 }
}
output {
 interface {
 ge-0/0/10.0;
 }
}

To monitor in a non-oversubscribed manner define two analyzers, each
with an output port:

[edit ethernet-switching-options]
user@host# set analyzer foo_ingress input ingress interface ge-0/0/0.0

[edit ethernet-switching-options]
user@host# set analyzer foo_ingress output interface ge-0/0/10.0

[edit ethernet-switching-options]
user@host# set analyzer foo_egress input egress interface ge-0/0/0.0

	 78	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

[edit ethernet-switching-options]
user@host# set analyzer foo_egress output interface ge-0/0/11.0

[edit ethernet-switching-options]
user@host# show
analyzer foo_ingress {
 input {
 ingress {
 interface ge-0/0/0.0;
 }
 }
 output {
 interface {
 ge-0/0/10.0;
 }
 }
}
analyzer foo_egress {
 input {
 egress {
 interface ge-0/0/0.0;
 }
 }
 output {
 interface {
 ge-0/0/11.0;
 }
 }
}

Technique: Remote Port-mirroring to a UNIX Host

Consider this technique if you need to perform port mirroring on a
device when there is no local analyzer available for attachment to the
monitor port. With this technique you can redirect matching traffic
over a GRE tunnel for remote capture analysis on a UNIX host. Note
that some Junos devices require Tunnel PIC hardware to perform GRE
tunneling for transit traffic. If your device has a gr-x/x/x interface you
should be good to go.

Note that you will need access to a root shell/sudo on the remote host
for creation of the GRE device and route table manipulation.

C	Follow these steps to perform report port monitoring between a Junos
device with GRE tunnel support and a remote Linux host.

	 Technique:	Remote	Port-mirroring	to	a	UNIX	Host	 79

Configure the Junos Device

Configure the GRE tunnel interface to be used to redirect sampled
traffic to the remote host (make sure to change the FPC and PIC
numbers to match one of the tunnel devices in your system):

interfaces {
 gr-0/2/0 {
 unit 100 {
 tunnel {
 source 192.168.50.10;
 destination 192.168.51.20;
 ttl 10;
 }
 family inet {
 address 172.16.28.1/30;
 }
 }
 }
}

Now, configure forwarding over the GRE interface. Make sure that
your rate and run-length parameters reflect your sampling needs for
the traffic that is being monitored:

forwarding-options {
 port-mirroring {
 family inet {
 input {
 rate 1;
 run-length 1;
 }
 output {
 interface gr-0/2/0.100;
 no-filter-check;
 }
 }
 }
}

Next, configure a filter and apply it to the desired interface, in the
desired direction:

interfaces {
 t1-1/0/3:3 {
 description Customer-A;
 unit 0 {
 family inet {
 filter {
 output capture-filter;
 }
 address 192.168.35.1/30;

	 80	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 }
 }
}
...

Make sure that the desired traffic is directed out the interface that is
being monitored in the case of output sampling. A static route is shown
here:

routing-options {
 static {
 route 192.168.70.0/24 next-hop 192.168.35.2;
 }
}
...

And now configure the firewall filter to match on the traffic you wish
to monitor with a then port-mirror statement. Here accept-all is
used to prevent disruption to non-matching traffic given the default
deny-all that would otherwise be encountered:

firewall {
 family inet {
 filter capture-filter {
 term 0-capture {
 from {
 source-address {
 192.168.70.0/24;
 192.168.35.0/30;
 }
 }
 then {
 port-mirror;
 accept;
 }
 term 5-accept_all {
 then accept;
 }
 }
 }
}

Configure the Remote Linux Host

Note that the following steps are performed in a root shell.

Ensure the host has GRE device support; if needed, load the GRE
module:

[root@linux-host]# modprobe ip_gre

	 Technique:	Remote	Port-mirroring	to	a	UNIX	Host	 81

Configure the GRE device:

 [root@linux-host]# ip tunnel add gre_int mode gre remote 192.168.50.10 local 192.168.51.20
ttl 255
[root@linux-host]# ip link set gre_int up
[root@linux-host]# ip addr add 172.16.28.2/30 dev gre_int

[root@linux-host]# ifconfig gre_int
gre_int Link encap:UNSPEC HWaddr C0-A8-33-14-7F-B7-01-00-00-00-00-00-00-00-00-00
 inet addr:172.16.28.2 P-t-P:172.16.28.2 Mask:255.255.255.252
 UP POINTOPOINT RUNNING NOARP MTU:1476 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Configure a route to the originating router that points over the new
GRE interface:

[root@linux-host]# route add -net 192.168.50.10 netmask 255.255.255.255 gw 192.168.51.1

Verify IP connectivity over the tunnel:

[root@linux-host]# ping 172.16.28.1
PING 172.16.28.1 (172.16.28.1) 56(84) bytes of data.
64 bytes from 172.16.28.1: icmp_seq=0 ttl=64 time=0.587 ms
64 bytes from 172.16.28.1: icmp_seq=1 ttl=64 time=0.685 ms
64 bytes from 172.16.28.1: icmp_seq=2 ttl=64 time=0.611 ms
64 bytes from 172.16.28.1: icmp_seq=3 ttl=64 time=0.595 ms

4 packets transmitted, 4 received, 0% packet loss, time 3010ms
rtt min/avg/max/mdev = 0.587/0.619/0.685/0.046 ms

Now start the traffic capture on the GRE device. If all has gone
according to plan, you should begin seeing the traffic that was sampled
remotely and redirected over the GRE tunnel:

[root@linux-host]# tethereal -i gre_int
tethereal: arptype 778 not supported by libpcap - falling back to cooked socket.

Capturing on netb
 0.000000 192.168.70.5 -> 10.0.45.8 UDP Source port: 49378 Destination port: 18252
 0.004236 192.168.70.5 -> 10.0.45.8 UDP Source port: 49380 Destination port: 16968
 0.020132 192.168.70.5 -> 10.0.45.8 UDP Source port: 49378 Destination port: 18252
 0.024303 192.168.70.5 -> 10.0.45.8 UDP Source port: 49380 Destination port: 16968
 0.040096 192.168.70.5 -> 10.0.45.8 UDP Source port: 49378 Destination port: 18252
 0.044314 192.168.70.5 -> 10.0.45.8 UDP Source port: 49380 Destination port: 16968
 ̂ C
7 packets captured
[root@linux-host]#

	 82	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Use “.x” Instead of “unit x” in Set Commands

C	To save some keystrokes, use this handy (and currently un-document-
ed) shortcut when you are configuring interfaces. Here the two forms
of the command are treated identically; .x is just shorter:

regress@mse-a# set so-0/0/0.5 encapsulation ?
Possible completions:
 ether-vpls-fr Ethernet VPLS over Frame Relay (bridging) encapsulation
 frame-relay-ccc Frame Relay DLCI for CCC
 frame-relay-ether-type Cisco-compatible Frame Relay Encapsulation DLCI
 frame-relay-ether-type-tcc Cisco-compatible Frame Relay Encapsulation DLCI for TCC
 frame-relay-ppp PPP over Frame Relay
 frame-relay-tcc Frame Relay DLCI for translational cross-connect
{backup}[edit interfaces]

regress@mse-a# set so-0/0/0 unit 5 encapsulation ?
Possible completions:
 ether-vpls-fr Ethernet VPLS over Frame Relay (bridging) encapsulation
 frame-relay-ccc Frame Relay DLCI for CCC
 frame-relay-ether-type Cisco-compatible Frame Relay Encapsulation DLCI
 frame-relay-ether-type-tcc Cisco-compatible Frame Relay Encapsulation DLCI for TCC
 frame-relay-ppp PPP over Frame Relay
 frame-relay-tcc Frame Relay DLCI for translational cross-connect
{backup}[edit interfaces]
regress@mse-a# set so-0/0/0 unit 5 encapsulation

Note that using a “.” to represent “unit” is the only supported method
of specifying a non-default unit number when adding an interface to a
protocols such as OSPF. This tip shows the same syntax can be used to
configure the interface directly.

Tip: Junos MOTD Before/After Login

Using the system login message or system login announcement
command allows you to display messages to users either before or
after they login to the system.

C	If your company wants to make announcements to the users accessing
the Junos device, you can use these commands:

root@SRX#set system login message <Before-Login-Message>

This causes <Before-Login-Message> to be displayed before Login
Prompt.

root@SRX#set system login announcement <After-Login-Message>

	 Tip:	Create	a	New	Login	Class	and	Add	Users	to	It	 83

And this causes <After-Login-Message> to be displayed after successful
authentication.

You can insert extra line breaks using the \n symbol:

lab@M7i-R106> show configuration system login
announcement "you have successfully logged into the system \n";
message "you are about to login to the system";

And the example login session one would see:

you are about to login to the system <-- login message
M7i-R106 (ttyp0)
login: lab
Password:
--- JUNOS 10.3R1.9 built 2010-08-13 12:15:32 UTC
you have successfully logged into the system <-- login announcement

Tip: Create a New Login Class and Add Users to It

You can modify the values associated with a login class by simply
creating a new login class. The new login class can provide the status of
current alarms, Junos CLI tips, and associated permissions.

C	To create a new login class and add users to it:

set system login class <New class name> login-alarms <-- show alarms on login
set system login class <New class name> login-tip <-- show tips on login
set system login class <New class name> permissions all <-- assign privileges
set system login user <User Name> class <New class name> <-- assign user to new login class
--- JUNOS 10.1R1.8 built 2010-02-12 17:24:20 UTC
Tip: Use 'request message' CLI pipe to replicate output of show commands to other users.
No alarms currently active

Note that if you use one of the predefined login classes (operator,
read-only, super-user, and unauthorized), you can only get the default
options associated with that pre-defined class. If you wish to modify
the login class slightly, like seeing login-tips upon login, you effectively
have to create a new login class with the same permissions as the
default login class. Use the set system login user <blah> class ?
option to see the default permission bits set with the pre-defined user
classes:

lab@M7i-R106# set system login user test class ?
Possible completions:
 <class> Login class
 AUDITOR
 EMERGENCY

	 84	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 operator permissions [clear network reset trace view]
 read-only permissions [view]
 super-user permissions [all]
 unauthorized permissions [none]

Also you can create a user class that mirrors the permissions of a
default user class, but also provides Junos CLI tips and alarms upon
login:

[edit]
lab@M7i-R106# set system login class super-user-local permissions all login-tip login-
alarms
lab@M7i-R106# show system login class super-user-local
login-alarms;
login-tip;
permissions all;

Tip: J-series and SRX HA Cluster Status Information

C	The following hidden command is a very useful tool when trouble-
shooting J-Series and SRX HA cluster problems. It combines the
output of performing a show chassis cluster [status][control-
plane][data-plane][interfaces][stastics][status] all in one
command, plus RG monitored events:

show chassis cluster information [no-forwarding]

Tip: Commit Confirm on a Clustered SRX

C	One great missing feature that is available on the routers but hasn't
officially made it to the SRX platform is the commit confirm command,
that allows you to commit a configuration, and in the event things go
wrong, the configuration automatically rollbacks after ten minutes if
there isn't another commit done. It’s used often when editing routing,
firewall filters, and now… security policies as well!

To use commit confirm you must enter in exclusive configuration mode
and here you can see the completions:

user@SRX5800> configure exclusive
warning: uncommitted changes will be discarded on exit
Entering configuration mode

{primary:node0}[edit]
user@SRX5800# commit ?
Possible completions:

	 Tip:	Change	Interfaces		 85

<[Enter]> Execute this command
and-quit Quit configuration mode if commit succeeds
at Time at which to activate configuration changes
check Check correctness of syntax; do not apply changes
comment Message to write to commit log
confirmed Automatically rollback if not confirmed
| Pipe through a command

A bit of warning, this is a hidden command (or is missing from the help
menus at this time) so is most likely not supported by Juniper.

Yes, commit confirmed is available in exclusive for clusters, however
test this on some versions and you will likely see Automatic rollback
failed on a cluster member. JTAC reports commit confirmed is not
supported in this deployment, so test it first on a lab device when you
update to a new Junos version beyond the scope of this book.

Tip: Change Interfaces

Sometimes, during troubleshooting, you want to move the configura-
tion associated with one interface to a different interface. You might
also want to do this during a reconfiguration, when you are moving
existing connections to new interfaces on the same device. This
helpful tip describes an easy way to move the configuration associated
with one interface to a different interface.

C	Let’s say this is the configuration associated with one of your inter-
faces:

[edit]
user@device# show
[...]
interfaces {
 ge-0/0/0 {
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 }
 }
}
[...]
protocols {
 ospf {
 area 0.0.0.0 {
 interface ge-0/0/0.0;

	 86	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 }
 }
}

And you need to move the configuration on interface ge-0/0/0 to
interface ge-0/1/0. Here’s an easy way to do this with one command:

[edit]
user@device# replace pattern ge-0/0/0 with ge-0/1/0

Commit and now check the result:

[edit]
user@device# show

[edit]
user@device# show
[...]
interfaces {
 ge-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 }
 }
}
[...]
protocols {
 ospf {
 area 0.0.0.0 {
 interface ge-0/0/1.0;
 }
 }
}

Another option for moving interface configurations from one interface
to another is to “rename” the interface in the [edit interfaces]
hierarchy. However, that only moves the actual interface configura-
tion to the new interface, while leaving the other configuration
associated with the old interface unchanged.

As this tip shows, using the replace command at the [edit] hierarchy
changes all configurations associated with an interface, regardless of
the section of the hierarchy where it appears. (It does not, however,
change configuration statements where the interface is not directly
referenced, such as interface-range statements or groups statements
that include the interface as part of a range, or through a wildcard
expression.)

So always use show | compare to verify the changes match your
expectations before you commit them.

	 Tip:	Wildcard	Delete	 87

Tip: Wildcard Delete

This tip can be useful, but like many powerful things in this world,
using it should come with a warning.

C	You can use wildcards along with regular expressions (regex) to match
large portions of a configuration and then choose to delete them. As an
example, let’s delete specific interfaces:

[edit]
regress@junoon# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 address 1.1.1.1/32;
 }
 }
}
ge-0/0/2 {
 unit 0 {
 family inet {
 address 2.2.2.2/32;
 }
 }
}
ge-0/0/3 {
 unit 0 {
 family inet {
 address 3.3.3.3/32;
 }
 }
}

[edit]
regress@junoon# wildcard delete interfaces ge-0/0/[2-3]
 matched: ge-0/0/2
 matched: ge-0/0/3
Delete 2 objects? [yes,no] (no) yes

[edit]
regress@junoon# show interfaces
ge-0/0/1 {
 unit 0 {
 family inet {
 address 1.1.1.1/32;
 }
 }
}

	 88	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

While this tip lets you quickly delete multiple items at the same level of
the hierarchy, note that it does not delete related configurations, so,
you may need to delete any configurations under the [edit protocols]
hierarchy that references these interfaces.

Also note that despite the name wildcard, this command takes an
argument of a regular expression. If you leave off the regular expres-
sion, it functions like the normal delete command and deletes the
specified hierarchy and everything underneath it.

So the warning should be obvious: this tip and command let you delete
large portions of your configuration very quickly. Use it wisely.

Tip: Searching a Large Configuration

Frequently you will have to search your configuration for a specific
parameter in a large file. For instance, you may have to see what
happens if you change interface ge-1/0/0 to ge-2/0/0. A quick way to
see every reference to ge-1/0/0 is to match on the regular expression
string ge-1/0/0 in the configuration file with the | match option.

C	If you issue a show| match ge-1/0/0 command you get the following
output.

regress@maple# show| match ge-1/0/0
 ge-1/0/0 {
 interface ge-1/0/0.0 {
 interface ge-1/0/0.0;

Although informationally correct, it does not provide the depth of all
the various instances. Try using another option, the | display set
command to provide a detailed context of the search value, as in:

show| match ge-1/0/0| display set

And as you can see it provides a much clearer reference to every
ge-1/0/0 value in the configuration file:

regress@maple# show| match ge-1/0/0 | display set
set interfaces ge-1/0/0 unit 0 family inet address 11.1.200.21/30
set interfaces ge-1/0/0 unit 0 family mpls
set protocols rsvp interface ge-1/0/0.0 aggregate
set protocols rsvp interface ge-1/0/0.0 reliable
set protocols rsvp interface ge-1/0/0.0 bandwidth 10g
set protocols rsvp interface ge-1/0/0.0 link-protection max-bypasses 0
set protocols mpls interface ge-1/0/0.0

	 Tip:		Make	Sure	You	Haven’t	Downloaded	a	Corrupted	Junos	Image	 89

set protocols ospf area 0.0.7.208 interface ge-1/0/0.0 interface-type p2p
set protocols ospf area 0.0.7.208 interface ge-1/0/0.0 ldp-synchronization
set protocols ldp interface ge-1/0/0.0 hello-interval 5
set protocols ldp interface ge-1/0/0.0 hold-time 15

Tip: Make Sure You Haven’t Downloaded a Corrupted Junos Image

C	When you download a Junos image from the Juniper download
website, and before upgrading your device using that new image, it is
best practice to check that the image was downloaded without any
corruption, so that nothing bad happens during the upgrade.

There are two methods to verify: checking the file size of the down-
loaded image, and verifying the MD5 or SHA-1 checksum of that file.

First, check the file size of the downloaded image. The Juniper down-
load website specifies the size of the image in bytes:

Branch SRX-series Install Package
Supported platforms SRX100, SRX210, SRX220, SRX240 and SRX650
MD5 SHA-1
10.3R1.9 tgz
210,595,906
15 Aug 2010

After you’ve downloaded the image to the device, run the file list
detail command and check the size of the image. If the size is different
from the download website, the image was not downloaded properly:

lab@host> file list detail /cf/var/home/lab/:
<snip>
-rw-r--r-- 1 root staff 210595906 Sep 24 12:56 junos-srxsme-10.3R1.9-domestic.tgz

Second, if the file sizes match, run an MD5 or SHA-1 checksum on the
file. The download website also specifies the MD5/SHA-1 checksums
of the images to aid in the verification as shown in the previous image
stats.

You can create an MD5 or SHA-1 checksum of the downloaded image
in two ways, from either the operational mode or the shell mode.

From operational mode:

lab@host> file checksum md5 junos-srxsme-10.3R1.9-domestic.tgz MD5 (/cf/var/home/lab/
junos-srxsme-10.3R1.9-domestic.tgz) = 0eb8a7703820994b0f0d1597b502c9c4

Then check the MD5 checksum from the web page (click on MD5
link), which in this instance cites MD5 0eb8a7703820994b0f0d1597b
502c9c4. And to check on the SHA-1:

https://download.juniper.net/software/junos/10.3R1.9/junos-srxsme-10.3R1.9-domestic.tgz
http://www.juniper.net/support/products/junos/dom/10.3/
http://www.juniper.net/support/products/junos/dom/10.3/

	 90	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

lab@host> file checksum sha1 junos-srxsme-10.3R1.9-domestic.tgz SHA1 (/cf/var/home/
lab/junos-srxsme-10.3R1.9-domestic.tgz) = e0ecaf26e50e16a0e1252cd372847f6641a2d8a1

And the SHA-1 checksum from the web page (click on the SHA-1 link)
is e0ecaf26e50e16a0e1252cd372847f6641a2d8a1.

For shell mode:

You may have to enter the shell and switch user (SU) to obtain root
privileges:

lab@host> start shell
% su
Password: <-- provide the root-authentication password
root@host%

Now you can follow the rest of the tip:

root@host% md5 junos-srxsme-10.3R1.9-domestic.tgz MD5 (junos-srxsme-10.3R1.9-domestic.
tgz) = 0eb8a7703820994b0f0d1597b502c9c4
root@host% sha1 junos-srxsme-10.3R1.9-domestic.tgz SHA1 (junos-srxsme-10.3R1.9-domestic.
tgz) = e0ecaf26e50e16a0e1252cd372847f6641a2d8a1

Visually compare the checksums to confirm that there were no issues in
the download.

Techniques: Junos Boot Devices and Password Recovery

These techniques are for users that are either locked out due to a lost
password or have a device that does not successfully boot, i.e., keeps
crashing and rebooting because of a corrupted image or configuration,
such that you are not able to enter CLI mode in order to execute a
request system reboot media disk command to attempt to boot from
alternative media. You did remember to perform a snapshot when all
was working well, right?

To make boot times faster, Junos does not pause very long at the boot
prompt (~.5 seconds), so you have to be fast, or early, or else you may
have to try again. Most find that hitting space a few times before you
see the prompt is a good way to ensure you catch it. With some versions
of Junos, entering keystrokes during boot can leave you at a “boot:”
prompt. If this happens enter “/boot/loader” to continue reboot with
the default kernel.

C	Use this technique to interrupt the boot loader in order to specify an
alternative boot device, or to boot into single user mode for password
recovery. This process is only possible from a console-attached terminal.

	 Techniques:	Junos	Boot	Devices	and	Password	Recovery	 91

Specify an Alternate Boot Device at Boot Time

As the router boots and you see the BIOS/Power on Self Test (POST),
get ready to hit the space bar on your keyboard. Remember, the
interrupt period is short and therefore easy to miss:

Will try to boot from
USB
Compact Flash
Hard Disk
Network
Trying to boot from USB
Trying to boot from Compact Flash

ial port
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS drive D: is disk2
BIOS 627kB/3668992kB available
FreeBSD/i386 bootstrap loader, Revision 1.1
(builder@warth.juniper.net, Mon Mar 14 02:09:30 UTC 2011)
Loading /boot/defaults/loader.conf
/kernel text=0x7c54a4 data=0x44ea0+0x9a608 syms=[0x4+0x86c90+0x4+0xbd98b
. . .
syncing disks... All buffers synced.
Hit [Enter] to boot immediately, or space bar for command prompt.

Now, QUICK! Enter a space to interrupt the boot process.

<space key>
Type '?' for a list of commands, 'help' for more detailed help.
OK ? <enter>
Available commands:
 reboot reboot the system
 heap show heap usage
 bcachestat get disk block cache stats
 boot boot a file or loaded kernel
 autoboot boot automatically after a delay
 help detailed help
 ? list commands
 show show variable(s)
 set set a variable
 unset unset a variable
 echo echo arguments
 read read input from the terminal
 more show contents of a file
 nextboot set next boot device
 install install Junos
 include read commands from a file
 ls list files
 load load a kernel or module
 unload unload all modules

	 92	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 lsmod list loaded modules
 pnpscan scan for PnP devices
 recover initiate recovery process from compact flash
 boot-conf load kernel and modules, then autoboot
 read-conf read a configuration file
 enable-module enable loading of a module
 disable-module disable loading of a module
 toggle-module toggle loading of a module
show-module show module load data

Use the nextboot keyword to specify an alternative boot device. If the
router has booted to flash, it tells the router to try booting from the
hard disk:

OK nextboot disk
Next device to boot from is currently disk

Use the reboot keyword (not boot, which simply continues the inter-
rupted boot process), to reboot to the specified media:

OK reboot
Rebooting...
. . .
Will try to boot from
USB
Compact Flash
Hard Disk
Network
Trying to boot from Hard Disk
Loading /boot/loader
. . .

Reset a Lost Root Password

Use these steps to reset a lost or forgotten root password for a Junos
device. Note that resetting the root password is not possible on a
FIPS-based Junos image, for security reasons.

Interrupt the boot process as previously described with a space key on
a console-attached terminal to access the OK prompt. Now enter boot
–s to boot into single user mode:

OK boot -s
platform_early_bootinit: M/T Series Early Boot Initialization
GDB: debug ports: sio
GDB: current port: sio
KDB: debugger backends: ddb gdb
. . .
Mounted jbase package on /dev/md0...
System watchdog timer disabled
Enter full pathname of shell or 'recovery' for root password recovery or RETURN for /bin/
sh:

	 Technique:	Replace	a	Missing	Boot	Device	 93

Enter recovery to begin the recovery script:

Enter full pathname of shell or 'recovery' for root password recovery or RETURN for /bin/
sh: recovery
Performing filesystem consistency checks ...
/dev/ad0s1a: FILE SYSTEM CLEAN; SKIPPING CHECKS
. . .
Performing checkout of management services ...
NOTE: Once in the CLI, you will need to enter configuration mode using
NOTE: the 'configure' command to make any required changes. For example,
NOTE: to reset the root password, type:
NOTE: configure
NOTE: set system root-authentication plain-text-password
NOTE: (enter the new password when asked)
NOTE: commit
NOTE: exit
NOTE: exit
NOTE: When you exit the CLI, you will be asked if you want to reboot
NOTE: the system
Starting CLI ...
root>

Enter a new root password. Be sure to remember it this time.

root> configure
Entering configuration mode
[edit]
root# set system root-authentication plain-text-password
<new password>
root#commit

MORE? For general information on Junos router storage and boot devices see:
http://www.juniper.net/techpubs/software/nog/nog-hardware/html/
routing-engines18.html.

Refer to your specific hardware guide for platform-specific informa-
tion. In many cases the router can detect boot issues with a device and
will automatically attempt to reboot from the next device in the list.

Technique: Replace a Missing Boot Device

This tip might allow you to avoid a routing engine RMA by replacing
a missing boot device, typically the hard disk, after errors are detected
and it’s automatically removed from the list of boot options.

Given that the device was removed due to some error, it’s very possible
that the storage device is either broken or on its way out, so this
technique should be seen more as a temporary work-around while you
make arrangements to replace the failing media.

mailto:user@host
http://www.juniper.net/techpubs/software/nog/nog-hardware/html/routing-engines18.html
http://www.juniper.net/techpubs/software/nog/nog-hardware/html/routing-engines18.html

	 94	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Access to a root shell is required when updating the boot list via
sysctl.

C	Most Juniper routers store bootable copies of the Junos software in
three possible locations: the internal flash disk, the hard drive, and the
removable media. In some cases, SMART self tests on the hard drive
will report an error resulting in the media being removed from the boot
list. As the disk drive is also used for /var and /tmp, the removal of the
device can also impact logging and the ability to save or load files. In
these cases, Junos reports an alarm when the disk is removed from the
boot list:

user@host> show system alarms
2 alarms currently active
Alarm time Class Description
2011-03-31 10:17:38 PDT Major Rear Fan Tray Failure
2011-03-31 10:17:07 PDT Major Host 1 hard-disk missing in Boot List
. . .

You also receive a warning at login if the router has booted onto
secondary media, which can happen if the compact flash is removed
from the boot list, or the router is told to boot from alternate media:

--- JUNOS 10.4-20110314.0 built 2011-03-14 02:12:13 UTC

--- NOTICE: System is running on alternate media device (/dev/ad1s1a).

. . .

How to Display and Alter the Current Boot List

Use the following command in shell mode to display the current list of
boot devices and their sequence:

root@host% sysctl -a | grep bootdevs

machdep.bootdevs: pcmcia-flash,compact-flash,lan

Note the absence of the disk in the current boot list. To place a device
back, use the –w switch to write updated value with sysctl command.
Note that a root shell is required for this step:

root@host% sysctl -w machdep.bootdevs=pcmcia-flash,compact-flash,disk,lan
machdep.bootdevs: compact-flash,lan -> compact-flash,disk,lan

The display confirms the delta and indicates the hard disk is again back
in the list of bootable devices. You should now reboot the router and
check to see if the alarm is cleared. If the disk is again found to be
absent it’s a strong indication that the unit is truly defective and
requires replacement.

	 Technique:	Replace	a	Missing	Boot	Device	 95

Given that we have mentioned root shells and hidden sysctl com-
mands, it seems appropriate to mention the hidden hard-disk-test
switch to the request chassis routing-engine command as it provides
access to SMART disk status and read/write tests. You need to be
logged in as root to use the command – super-user/wheel permissions
are not enough. The command is hidden because misuse could
prematurely wear out media (compact flash only has so many write
cycles), or cause control plane/convergence issues on a busy system
that needs IO bandwidth for reasons other than testing.

root@host> request chassis routing-engine hard-disk-test ?
Possible completions:
 disk Name of hard disk
 long Run SMART extended self test
 short Run short test
 show-status Display status of test
root@host> request chassis routing-engine hard-disk-test show-status disk /dev/ad2
Device: ST940817SM Supports ATA Version 7, Firmware version 3.AAB
ATA/ATAPI revision 7
device model ST940817SM
serial number 5RQ02H70
firmware revision 3.AAB
cylinders 16383
heads 16
sectors/track 63
lba supported 21248 sectors
lba48 supported -4630046677200252160 sectors
dma supported
overlap not supported

Feature Support EnableValue Vendor
write cache yes yes
read ahead yes yes
dma queued no no 31/1F
SMART yes yes
microcode download yes yes
. . .

SMART Error Log:
SMART Error Logging Version: 1
No Errors Logged

SMART SelfTest Log:
SMART SelfTest Logging Version: 1

Selftest Type Status Failure-LBA Timestamp

Unknown Successful None 0

	 96	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Hide Pieces of the Configuration

The editors learned a lot of new things while editing this book, the
following being one good example.

C	An often forgotten or unnoticed Junos tip is that you can hide common
pieces of configuration in everyday use by setting apply-flags omit in
the hierarchy you want to omit, like so:

[edit]
user@device# set system apply-flags omit

[edit]
user@device# show
Last changed: 2011-05-02 17:24:51 UTC
version 10.3R1.9;
system { /* OMITTED */ };
logical-systems {
[...]

After committing, a show system in configuration mode will still show
the whole stanza and editing works just as it usually does:

[edit]
user@device# show system
apply-flags omit;
host-name device;
root-authentication {
 encrypted-password "1KI99zGk6$MbYFuBbpLffu9tn2.sI7l1"; ## SECRET-DATA
[...]

Use show | display omit in the top of configuration to show the entire
configuration without omitting sections:

[edit]
user@device# show | display omit
Last changed: 2011-05-02 17:24:51 UTC
version 10.3R1.9;
system {
 apply-flags omit;
 host-name device;
 root-authentication {
 encrypted-password "1KI99zGk6$MbYFuBbpLffu9tn2.sI7l1"; ## SECRET-DATA
[...]

The editors found this tip useful for hiding long, uninteresting, static
pieces of various configurations. However, if you are going to use it,
you should probably make sure everyone on the team knows how to
see the full configuration, unless it’s April Fool’s day.

	 Tip:	How	to	View	Built-in	Configuration	 97

Tip: How to View Built-in Configuration

This came to the editors as a tip for how to view the pre-defined
applications on an SRX. And the tip is useful for that. However, we’d
like to point out that the tip actually allows you to see a number of
default settings, too.

C	Junos software contains default configurations in a hidden group
named junos-defaults. To see them, use the show configuration groups
junos-defaults command:

user@mx240> show configuration groups junos-defaults
dynamic-profiles {
 <*> {
 variables {
 junos-interface-unit {
 internal;
 valid-path interface_unit_number;
 }
 junos-interface-ifd-name {
 internal;
 valid-path "interface_name|underlying-interface";
 }
 junos-underlying-interface-unit {
 internal;
 valid-path interface_unit_number;
 }
 junos-underlying-interface {
 internal;
 valid-path underlying-interface;
 }
[...]

Pre-defined applications on a SRX device start with junos-. To view a
list of the predefined services use the show configuration groups
junos-defaults applications command like this:.

user@srx240> show configuration groups junos-defaults applications
#
File Transfer Protocol
#
application junos-ftp {
 application-protocol ftp;
 protocol tcp;
 destination-port 21;
}
#
Trivial File Transfer Protocol
#

	 98	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

application junos-tftp {
 application-protocol tftp;
 protocol udp;
 destination-port 69;
}

But, you can also see the default configuration with the show configu-
ration | display inheritance defaults command. Here, we include
the defaults in the system configuration:

user@mx240> show configuration system | display inheritance defaults
host-name vr-device;
##
'ports' was inherited from group 'junos-defaults'
##
ports {
 ##
 ## 'console' was inherited from group 'junos-defaults'
 ## 'vt100' was inherited from group 'junos-defaults'
 ##
 console type vt100;
}
root-authentication {
 encrypted-password "1KI99zGk6$MbYFuBbpLffu9tn2.sI7l1"; ## SECRET-DATA
[...]

You can see that the system ports console type vt100 statement was
inherited from the junos-defaults group

Tip: Preventing Other Users From Editing a Configuration While
You're Still Configuring

The Junos commit model provides you with the ability to have either a
private or an exclusive configuration session. A private session is
private to you only, but does not prevent other users from having their
own sessions at the same time. An exclusive session means that no one
else can have a configuration session at the same time. First let’s
acknowledge the original tip:

C	If you want to prevent other users from editing the configuration use
the configure exclusive command to exclude other users from editing
the configuration:

ugo@nigeria> configure exclusive
warning: uncommitted changes will be discarded on exit

It’s important to note that if this session gets hung, the request system
logout user <user> command can clear the session. (See the next
entry, Tip: Logging Out a Connected User).

	 Tip:	Logout	a	Connected	User	 99

As shown here, however, to enter the exclusive configuration mode
just add the keyword exclusive after your configure statement. Note
that uncommitted changes are discarded on exit, which is not the
normal behavior for a regular configuration session.

Tip: Logout a Connected User

C	You can disconnect a user from a session using the request system
logout <user-name> command. You can also use this command if a
user hangs a configuration session while in exlusive mode, or if they
simply forget to logout.

As an example, let’s disconnect Robin from his CLI session:

root@Junos> show system users
2:13PM up 5:13, 2 users, load averages: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE WHAT
root d0 - 9:01AM - cli
Robin p0 X.X.X.X 2:13PM -cli (cli)
root@Junos> request system logout Robin
root@Junos> show system users
2:13PM up 5:13, 2 users, load averages: 0.00, 0.00, 0.00
USER TTY FROM LOGIN@ IDLE WHAT
root d0 - 9:01AM - cli

You can also logout based upon the TTY instead of the username.
This is especially useful if a single user has multiple logins.

Technique: Automatic Junos Configuration Backup

C	If you do configuration changes all the time, you need an automatic
method for configuration backup. Try this:

1. To remotely save a copy of a configuration each time you commit:

[edit]
user@Junos# set system archival configuration transfer-on-commit

[edit]
user@Junos# set system archival configuration archive-sites ftp://
loginname:loginpassword@FTP-server-ip/directory

2. To remotely save a copy of a configuration at a specified time
interval (in this example, 60 minutes):

	 100	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

[edit]
user@Junos# set system archival configuration transfer-interval 60

[edit]
user@Junos# set system archival configuration archive-sites ftp://
loginname:loginpassword@FTP-server-ip/directory

For more secure password storage, you can specify the password
separately from the URL. Use a URL in the form of ftp://user@
server/directory and add the password argument. When you do this,
the Junos software will encrypt the password in a reversible encryp-
tion algorithm. Even though it is not completely secure, it makes the
password harder to determine than a plain-text password encoded in
a URL.

You can also use SCP for transferring the configurations. Use a URL
in the form scp://user@host:/directory and provide the password
with the password argument. According to JTAC, one of the most
common mistakes with SCP URLs is leaving off the colon after the
hostname. However, when tested with 10.3R1, it seemed to work both
with and without the colon after the hostname. So the behavior of the
software may have changed at some point. Try it out and leave a post
on this book’s J-Net forum pages.

If you want to look for log messages related to the archival process,
you can match on error messages with the user facility and a level of
notice or more severe.

Tip: Quickly Synchronize System to NTP Server

While the purpose seems simple enough, the Network Time Protocol
(NTP) is rife with nuisances that are not well understood. For exam-
ple, a constant source of confusion is that in order for NTP to syn-
chronize, the two systems clocks have to be already relatively close to
one another, or else the server’s updates are ignored, equally a cart-
before-the-horse type paradox, if you will.

The most common method to gain initial sync is via a NTP boot
server. As its name implies, the system contacts the specified server at
boot time and synchronizes its clock regardless of how far their clocks
are skewed. You did remember the backup-router statement to ensure
it has a route at boot before RPD and its minions of protocols have
built their tables, right?

	 Tip:	Firewall	Support	for	NTP	Status	 101

This tip mimics the boot-servers initial clock set functionality but
avoids the need to reboot.

C	Use the set date ntp <server-address> command to synchronize the
local clock without requiring explicit NTP configuration, or a reboot
for initial synchronization via a boot server.

user@host> set date 201101010101
Sat Jan 1 01:01:00 PST 2011
user@host> set date ntp 172.17.28.5
31 Mar 11:41:28 ntpdate[6670]: step time server 172.17.28.5 offset 7724421.644772 sec
user@host> show system uptime

Current time: 2011-03-31 11:41:35 PDT

Tip: Firewall Support for NTP Status

Keeping routers (and their log timestamps) synchronized with NTP,
and the use of lo0-based routing engine protection firewall filters, are
two best practices that are often deployed together.

Another one of NTP’s not-so-well-understood nuances is its need to
use the 127.0.0.1 loopback address when communicating with the
local daemon to obtain server association status. Make sure your
protecting filters allow such traffic, or you’ll get an error rather than
the expected status display.

C	Scenario: You have configured Junos for NTP, and while actual clock
synchronization appears to be working fine, you note that the show ntp
associations command is timing-out:

user@host# show ntp associations
localhost: timed out, nothing received
***Request timed out

The solution is to make sure your routing-engine protection filter
permits internal communications with the ntp daemon:

[edit]
user@host# show firewall family inet filter router-access term ntp-reject
from {
 source-prefix-list {
 default-prefix;
 ntp-router-access except;
 }
 protocol udp;
 port ntp;
}
then {

	 102	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

 discard;
}

user@host# show policy-options prefix-list ntp-router-access
10.0.3.1/32;
10.0.3.99/32;

Modify the ntp-router-access prefix list to include the loopback
address, like this:

user@host# show | compare
[edit policy-options prefix-list ntp-router-access]
+ 127.0.0.1/32;

user@host# run show ntp associations
 remote refid st t when poll reach delay offset jitter
==
*10.0.3.99 130.149.17.8 2 u 29 64 377 0.624 -0.427 0.280
+10.0.3.1 192.36.143.150 2 - 24 128 377 2.343 2.014 0.168

Tip: Configuration Loading on a Router from the Output of Show

This tip tells you how to use the load merge relative command.

C	Instead of loading entire configuration files and committing them, you
can do this for an interface, a protocol, or any other hierarchy.

For example, if you want to load an interface configuration:

1. On a Junos device, type show configuration interfaces. Copy the
configuration to a text editor and make changes, as needed.

2. On the new Junos device, type edit interfaces to enter the edit
interface hierarchy.

3. Enter the load merge relative command.

4. Here, you should paste the interface configuration you want to add.

5. Press Ctrl-D.

6. Type top.

7. Type commit.

The interfaces will have the configuration you loaded without needing
to copy an entire configuration file!

It’s the same process for protocols, too, but in the [edit protocols]
hierarchy.

	 Tip:	Junos	Display	Set	 103

The editors regularly use this in our labs. You can use show com-
mands to display a small and specific piece of the configuration
hierarchy on one device, and then paste it into the new device. Using
load merge relative allows you to do that without having to modify
the configuration you are pasting to include the levels of hierarchy
above the piece you’re pasting.

Another use case example: if you want to disable an interface in both
the ISIS and MPLS protocols you can copy the portion of the configu-
ration that disables the interfaces and use load merge relative to copy
it to both protocols at the same time.

Tip: Junos Display Set

C	If you are new to Junos and still not comfortable with its hierarchical
shaped configuration, try using the display set command. First, look
at a typical Junos configuration:

[edit]
root@Junos# show
system {
 services {
 web-management {
 http;
 }
 }
}

And now here is the same thing but using the display set command:

[edit]
root@Junos# show | display set
set system services web-management http;

We’ve heard about people describing this as a way to become familiar
with the Junos configuration hierarchy and explaining how it’s a good
way to feel more comfortable with Junos for, say, former ScreenOS
users, who are used to viewing a configuration as a list of “set”
commands, or for IOS administrators. However we, as a group of
Junos engineers, respectfully suggest that you try to view the Junos
configuration in its hierarchical format. You’ll find that the hierarchi-
cal format is easier to use over time, and it should also help you better
navigate the configuration as you try to modify it. Rest assured, the
display set pipe command is always there should you need it.

	 104	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

On a related note, if you are seeking to view set commands as an easy
way to copy configuration changes from one device to another,
consider using the load patch functionality instead. To use load
patch, first make the changes on one device. On that device, use the
command show | compare to show the changes. The output of show |
compare is the patch that you will use to load on other devices. On a
second device, you can type load patch terminal and paste the patch
(the output of show | compare from the first device). Then, hit CTRL-
D. The change will now be replicated to the candidate configuration
on the second device.

Tip: Configure a Basic Firewall on SRX

C	A basic firewall on a SRX device can be done in five steps. Count ‘em:

1. Create zones.

2. Add interfaces in the zones.

3. Enable system properties, protocols for each zone.

4. Create address book entries to allow/deny application traffic.

5. Create policy between zones to permit/deny.

That’s it – you’re done!

Now, issue the show security zone and show security policies
commands to check your work.

Technique: SRX CLI Management Plane Traffic (Telnet/SSH)
Timeout Settings

This is a great tip that explains how to reduce the frequency of, or to
eliminate, hung SSH sessions to SRX devices.

C	A CLI session (Telnet/SSH) to SRX timeouts in 30 minutes, regardless
of your login class idle-timeout settings. Why? The nonuser-configu-
rable policy self-traffic-policy controls management (Telnet/SSH)
sessions to the SRX itself and the built-in junos-telnet/junos-ssh
applications have 1800-second inactivity timeouts (the default value
for TCP applications), as you can see:

	 Technique:	SRX	CLI	Management	Plane	Traffic	(Telnet/SSH)	Timeout	Settings	 105

user@device> show security flow session
Session ID: 28993, Policy name: self-traffic-policy/1, Timeout: 1800, Valid
 In: 10.210.11.158/6529 --> 10.210.11.131/22;tcp, If: ge-0/0/0.0, Pkts: 111, Bytes: 9583
 Out: 10.210.11.131/22 --> 10.210.11.158/6529;tcp, If: .local..0, Pkts: 108, Bytes: 15585
Total sessions: 1

What’s the solution? Simply increase the timeout in junos-ssh (junos-
telnet) built-in applications:

user@device> show configuration
[...]
applications {
 application junos-ssh inactivity-timeout 3600;
}
[...]

user@device> show security flow session
Session ID: 7, Policy name: self-traffic-policy/1, Timeout: 3600, Valid
 In: 10.210.11.158/31948 --> 10.210.11.131/22;tcp, If: ge-0/0/0.0, Pkts: 69, Bytes: 7015
 Out: 10.210.11.131/22 --> 10.210.11.158/31948;tcp, If: .local..0, Pkts: 52, Bytes: 6513
Total sessions: 1

NOTE Your modified default application may be used in other policies and
the timeout change will also affect transit traffic. If needed, create your
own custom Telnet/SSH applications to be used in the user-created
policies.

And a tip for OpenSSH users: if you connect to SRX from a *nix host,
configure the OpenSSH client to send keepalive messages to keep the
flow active:

admin@unix ~]$ more .ssh/config
Host *
ServerAliveInterval 120

Host srx650
ServerAliveInterval 30

[admin@unix ~]$

Many other SSH client applications implement similar keepalive
techniques.

Note that you want to use a keepalive mechanism that actually sends
data through the encrypted channel, rather than merely using a TCP
keepalive mechanism. The ServerAliveInterval option for OpenSSH
sends data through the encrypted channel.

	 106	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

We’ve heard about some operators using a very low-tech keepalive
mechanism – a client programmed to periodically print a space over
the SSH session. It’s not an elegant keepalive mechanism, but it works!
(Test before using.)

Tip: Layer 3 VPN Dynamic GRE

If you cannot build MPLS LSPs, but you still want to support L3
VPNs, you can use Layer 3 VPNS over dynamic GRE tunnels. All that
is required is IP connectivity. When you do so:

C	A GRE tunnel will be built automatically and the GRE route to the
remote side loopback interface will be placed in inet.3.

This capability also provides a good migration strategy if you want
Layer3 VPNs over an IP core now, but still want to provide the flexibil-
ity to migrate to an MPLS core in the future.

See the following link in the Junos documentation for details: http://
www.juniper.net/techpubs/en_US/junos10.0/information-products/
topic-collections/config-guide-vpns/vpns-configuring-gre-tunnels-for-
layer-3-vpns.html

Tip: Fixing Corrupted (Failed) Junos EX or SRX Software Using USB
Port

You discover that your Junos EX or SRX device does not complete
normal boot up. For some reason, the image seems to be corrupted—
for example, a continuous power failure. If this occurs, don’t worry,
you can get it back up within few minutes using the USB port.

C	Step 1. Get a USB flash drive. Copy the Junos image to the USB drive
(without creating folders). Use FAT file format if the USB size is less
than 2 GB. Use FAT32 if the USB size is greater than or equal to 4 GB.
The example below uses the file image junos-srxsme-10.4R1.9-domes-
tic.tgz.

Step 2. Insert the flash into an EX/SRX USB port.

Step 3. Reboot the device. When Junos boots up, you will see the
message :

	 Tip:	Interpreting	Syslog	Messages	 107

Press Space to abort autoboot

Do nothing. A little while later, you will see:

Hit [Enter] to boot immediately, or space bar for command

prompt.

Touch the spacebar. You will be at loader mode; the prompt should
be loader>. If the prompt is > , type >boot to make it loader>.

Step 4. Now type the following command:

loader> install file:///junos-srxsme-10.4R1.9-domestic.tgz.

Expect to wait awhile for the code to download. Additionally, after
the Junos OS boots, you may see messages relating to file system
structure and root file system creation. We originally planned to show
this, but it went on for 15 pages and the editor in chief chucked it. So,
trust us. After a bunch of messages, the system then reboots. You can
try it yourself and watch the monitor the whole time – expect the
entire process to take ten to fifteen minutes.

Tip: Interpreting Syslog Messages

C	Junos uses standard BSD syslog formatting and some users find the
various message codes somewhat cryptic and difficult to decipher. If
that’s the case, use the help syslog <message code> command to
provide additional information about a particular message code, like
this:

user@host> help syslog UI_CMDLINE_READ_LINE

Name: UI_CMDLINE_READ_LINE
Message: User '<username>', command '<input>'
Help: User entered command at CLI prompt
Description: The indicated user typed the indicated command at the CLI prompt and
pressed the Enter key, sending the command string to the management process (mgd).
Type: Event: This message reports an event, not an error
Severity: info

Now that you know what all those logging codes mean, don’t forget to
search the syslog for any that may be of concern:

user@host> show log messages | match UI_CMDLINE_READ_LINE
May 4 09:32:24 mse-a mgd[6926]: UI_CMDLINE_READ_LINE: User 'regress', command 'show
version '

file:///junos-srxsme-10.4R1.9-domestic.tgz

	 108	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Send Syslog Messages with Different Facility Codes to the Same
Syslog Host

Even with the default settings on, Junos can generate a lot of syslog
information. That’s because syslog standards include a facility and a
priority code that are used to identify the process that generated the
messages, as well as their relative severity, respectively.

When using Junos software with a remote syslog server, you might
normally configure a per-syslog host facility code, which means you
loose the ability to filter and search based on specific facility codes.

This tip shows you how to generate messages with different facility
codes to the same syslog host.

C	Your operational goal is to send firewall logs with a facility code
of local3, while all other logging information is sent as local4. The
problem is you only have one remote syslog host and with Junos
logging facilities defined on a per-host basis, in theory that forces all
messages sent to that host to have a common facility.

So this tip provides a work around that involves the definition of
multiple static-host-mappings for the same host along with multiple
syslog host definitions using different facility values.

static-host-mapping {
 nms inet 100.0.33.99;
 nms-firewall-log inet 100.0.33.99;
}

syslog {
[...]
 host nms {
 authorization info;
 change-log info;
 interactive-commands info;
 facility-override local4;

 host nms-firewall-log {
 firewall info;
 facility-override local3;
 }
}

	 Tip:	VRRP	Fast	Failover	 109

Tip: VRRP Fast Failover

VRRP can be configured for sub-second failover with the fast-interval
option. The fast-interval setting is in ms. Setting a fast-interval
value of 100 will provide failure detection within 300 ms. Failover
time is a loss of three keepalives, so a setting of 100 ms means detec-
tion within 300 ms:

interfaces {
 irb {
 unit 135 {
 family inet {
 address 10.150.135.2/24 {
 vrrp-group 135 {
 virtual-address 10.150.135.1;
 priority 100;
 fast-interval 100; <-- set failover to 300 ms
(3x100ms)
 preempt;
 accept-data;
 }
 }
 }
 }
 }
}

C	Verify the VRRP configuration is active using show vrrp and show vrrp
detail. You will see the fast-interval setting of 100 ms as Advertise-
ment interval: .100 (where the interval is displayed in seconds).

jnpr@Ophion-MX240-RE0> show vrrp
Interface State Group VR state VR Mode Timer Type Address vip
irb.135 up 135 master Active A 0.079 lcl 10.150.135.2
10.150.135.1
jnpr@Ophion-MX240-RE0> show vrrp detail
Physical interface: irb, Unit: 135, Address: 10.150.135.2/24
 Index: 121, SNMP ifIndex: 5641, VRRP-Traps: enabled
 Interface state: up, Group: 135, State: master, VRRP Mode: Active
 Priority: 100, Advertisement interval: .100, Authentication type: none
 Delay threshold: 100, Computed send rate: 40
 Preempt: yes, Accept-data mode: yes, VIP count: 1, VIP: 10.150.135.1
 Advertisement Timer: 0.061s, Master router: 10.150.135.2
 Virtual router uptime: 4d 00:03, Master router uptime: 4d 00:03
 Virtual Mac: 00:00:5e:00:01:87
 Tracking: disabled

	 110	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Tip: Copying Files Between SRX Clusters

C	It’s often easier to copy code or log files from one SRX to another in
the cluster. You can do this by entering the shell.

juniper@SRX5800# start shell
%rcp -T junos-srx3000-10.1R1.8-domestic.tgz node1:

The syntax is rcp -T <file> <node> and allows you to copy files from
one SRX to another, hopefully saving you some time and avoiding
potential headaches.

Tip: Connecting to the Secondary Node from the Primary Node on an
SRX Cluster

C	There may be instances where, due to some connectivity issues, you are
unable to remotely log in into the secondary node on an SRX cluster.

In the absence of a console connection to the secondary, it is still
possible to log into the secondary node from the primary node and run
Junos commands without having to dispatch a technician to the site.

On branch SRX devices, this can be achieved by the command:

{primary:node0}
lab@host-At> request routing-engine login node 1
--- JUNOS 10.1R3.7 built 2010-011-10 04:15:10 UTC
{secondary:node1}
lab@host-B>

On high-end SRX devices, you need to be in the shell and run the
following:

root@host-A% rlogin -T node1

Tip: Gracefully Shutdown Junos Software Before Removing Power

The following tip may seem completely obvious to long-time Junos
users; however, it is not necessarily obvious to those new to the Junos
platform. While some network vendors store configuration informa-
tion only in flash and only when the user specifically requests it, Junos
uses a real file system, which is always available for writing. As a
consequence, the file system is open to corruption when the power is

	 Tip:	Connect	Another	Device	Using	Auxiliary	Port	 111

removed when the operating system is still running. Junos will
automatically attempt to correct any file system errors, but still, just
shut it down.

C	It’s recommended to gracefully shutdown the Junos software before
removing power. When appropriate, use the request system halt
command to gracefully halt Junos and help ensure file system integrity.

user@device> request system halt

When the software has been halted, system power is maintained.

You can also use request system power-off on some platforms. On
platforms with dual routing engines, you may also want to use the
both-routing-engines option (and, in fact, the software should warn
you of that).

Tip: Connect Another Device Using Auxiliary Port

The editors have regularly heard people ask if Juniper has a capability
similar to that found in one of our competitor’s terminals, but after
seeing this tip this capability appears to only be available on the J
Series Services Router, and it is only available for the single auxiliary
port on that device. Still it might be useful in certain configurations.
For example, it might be useful if you have two J Series in the same
location, or you have a single J-Series and a single EX Series Ethernet
Switch in a location. Try it.

C	Junos permits you to use the AUX port to connect to another device’s
console. Note that you must use a rollover cable to connect the Junos
device and the other one.

You can use this capability in two ways:

1. Locally

Within the shell, type:

% /usr/libexec/interposer

You will now be connected to the auxiliary port:

% /usr/libexec/interposer

You are now connected to the console of the device attached to the
AUX port.

	 112	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Press CTRL-^ to disconnect.

2. Remotely

You can configure reverse Telnet or reverse SSH to connect to AUX
port :

[edit]
user@host# set system services reverse telnet

or:

[edit]
user@host# set system services reverse ssh

 Optionally, you can specify the port used for each one.

NOTE By default, the system uses port 2900 for reverse telnet and 2901 for
reverse SSH.

Tip: Checking a Link Status Using Port Descriptions

C	If you set up port descriptions on all your ports using easy-to-remem-
ber names, for example: # set interfaces ge-1/0/0 description
Server1, you can quickly see the link status without having to remem-
ber the port number, just the port description:

>show interfaces description | match Server1.

We regularly use show interfaces description while troubleshooting
in our labs, and it’s worth noting one important element of the way
Junos software implements this command.

The show interfaces description command only shows interfaces or
units with descriptions. Therefore, you only see interfaces or units
that have descriptions. If you configure descriptions on the interfaces,
and not the units, you only see the interfaces in the command output.
Likewise, if you configure descriptions on units, but not on interfaces,
you only see the units in the command output.

Granted, in some cases, this doesn’t matter; however, in other cases
(frame-relay being an example that quickly comes to mind), this
distinction does matter. Play around with this one to refine its useful-
ness.

	 Technique:	Monitor	Interesting	Commands	Executed	by	Others	in	Real-time	 113

Technique: Monitor Interesting Commands Executed by Others in
Real-time

Junos has great syslog capabilities, and the CLI has many useful
features for parsing logs, and this technique is for the paranoid or
perhaps slightly voyeuristic operators that are curious about what
others may be doing on the device. For a better experience, use the |
match and | except to filter the output so that you can focus on the
juicy stuff.

C	If you wish to monitor the commands being entered by others, you
must first configure syslog for interactive commands. Try something
akin to the following:

user@host> show configuration system syslog
user * {
 any emergency;
}
host 10.210.32.24 {
 authorization any;
}
file messages {
 any notice;
 authorization info;
}
file interactive-commands {
 interactive-commands any;
}

Now, as a result, all log messages of type interactive-commands are
logged to a file named interactive-commands. You can now monitor
the changes to the interactive-commands file, but filter the delta to
show only entries that match the pattern configure:

user@host> monitor start interactive-commands | match configure

user@host>

Note that you see the matching output immediately because the
command you just entered matches the pattern. Meanwhile, in another
terminal window, various commands are run to include configure. As
expected or hoped for, only the configure command appears in the
output:

*** interactive-commands ***
Dec 22 21:10:56 host mgd[58865]: UI_CMDLINE_READ_LINE: User 'user', command 'monitor
start interactive-commands | match configure '
Dec 22 21:11:18 host mgd[58870]: UI_CMDLINE_READ_LINE: User 'user', command 'configure '

	 114	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

If you run monitor list, it will even show you the pipe commands
applied to the output (not that any of us editors have ever done that,
mind you, it just kind of came to us):

user@host> monitor list
monitor start "interactive-commands" (Last changed Dec 22 21:11:18)
 | match "configure"

Tip: Suspend and Resume Trace File Monitoring

Junos supports a monitor stop command, which, like undebug all on
other vendors’ equipment, stops the monitoring of all logs (tracefiles)
that have been selected for monitoring. This tip shows you how Junos
can quickly achieve a similar effect while still allowing the continuous
writing to log files. It ensures that information isn’t lost while you
catch up with all the information already displayed on your monitor.

C	Once you have configured tracing/logging and have begun to view a
given log file in real time using monitor start <filename>, you can
always stop the output of trace to your terminal with a monitor stop
<filename> command. But now you need another monitor start
command to resume activity.

In those cases where you simply wish to pause the trace output, but
expect you might again wish to resume monitoring, use the esc-q
sequence to temporarily suspend monitor output. Though no longer
displayed on your terminal, the trace information is still written to the
log files until tracing is removed from the configuration:

user@host> monitor start trace-ospf
*** trace-ospf ***
Nov 10 20:22:56.970256 OSPF hello from 10.10.137.26 (IFL 74, transit area 0.0.0.0) absorbed
Nov 10 20:22:58.342734 OSPF hello from 10.10.137.24 (IFL 74, transit area 0.0.0.0) absorbed
Nov 10 20:23:00.073062 OSPF hello from 10.10.137.21 (IFL 74, transit area 0.0.0.0) absorbed

Here, the user enters the esq-q sequence…

*** monitor and syslog output disabled, press ESC-Q to enable ***

user@host>

user@host> show configuration protocols ospf
traceoptions {
 file trace-ospf size 1m files 10;
 flag event;
 flag state;
 flag hello;
[...]

user@host>

	 Tip:	Combine	Match	with	Junos	Syslog	Capabilities	 115

Now the user enters the esq-q sequence to toggle the monitor output
back on…

*** monitor and syslog output enabled, press ESC-Q to disable ***

Nov 10 20:23:12.812435 OSPF periodic xmit from 10.10.137.10 to 224.0.0.5 (IFL 73)
Nov 10 20:23:13.094161 OSPF hello from 10.10.137.28 (IFL 74, transit area 0.0.0.0) absorbed
Nov 10 20:23:13.095060 OSPF hello from 10.10.137.29 (IFL 74, transit area 0.0.0.0) absorbed
[...]

user@host> monitor stop

Tip: Combine Match with Junos Syslog Capabilities

The previous tip provided guidance about monitoring a tracefile in
real time. It’s used again here because many do not realize the same
approach can be used for remote sysloging or when writing to a local
log file. Stated differently, the previous tip shows you how to filter
what was viewed; this tip shows how to filter what is actually logged.
Use it carefully because sloppy matching may omit important infor-
mation.

C	Use the Junos match function when configuring sysloging to reduce
network traffic and storage space. That’s because only matching entries
are actually logged!

Here’s a remote syslog example that results in only IDP related entries
being sent to the remote host:

user@host# set system syslog host 10.10.10.100 any any
user@host# system syslog host 10.10.10.100 match IDP_ATTACK_LOG_EVENT

And a logcal logging example that only logs interface flap events:

user@host# system syslog file interface-change-logs any any;

user@host# system syslog file interface-change-logs match UpDown;

Tip: Static Host Mapping

C	You can use static host mapping for situations where you find yourself
pinging, tracerouting, or configuring a specific address on a regular
basis. Once configured, you can use the name you’ve defined for an
address instead of the address itself, thus saving you from having to
look it up all the time.

mailto:root@Junos

	 116	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Let’s say Customer-1 has a loopback address assigned to it of
192.168.2.1. First assign this address the name Customer-1:

[edit]
lab@srxA-2# set system static-host-mapping Customer-1 inet 192.168.2.1

[edit]
lab@srxA-2# commit
commit complete

Now when you want to configure a protocol or other stanza that
would include that address, you only have to remember that it was
associated with Customer-1:

[edit]
lab@srxA-2# set protocols bgp group internal neighbor Customer-1

Notice that the Juniper device recognizes the relationship and fills in
the appropriate information:

[edit]
lab@srxA-2# show protocols bgp
group internal {
 neighbor 192.168.2.1;
}

Tip: Viewing Core Files

C	Occasionally, the Junos operating system encounters an error and
creates what is called a core dump. These files contain information that
can help Juniper engineers find the cause of the error that was encoun-
tered. You can use show system core-dumps command to list all core
dumps on your router.

And, we are going to end this book with a bonus tip for all those of
you who aren’t satisfied with letting JTAC do all the troubleshooting
work. You can use the show system core-dumps core-file-info
<filename> command to see the stack trace in the core file, like this:

user@device> show system core-dumps core-file-info /var/tmp/
cores/rpd.core.2.201101191435.965992
'rpd' process terminated with signal 11 Segmentation fault

Stack trace:
#0 0x082b7649 in tai_delete_branch ()
#0 0x082b7649 in tai_delete_branch ()

	 Tip:	Viewing	Core	Files	 117

#1 0x082b849a in tai_lsp_tunnel_id_available_notification ()
#2 0x082b8709 in tai_update_ldp_p2mp_nexthop ()
#3 0x082b87d3 in tai_update_rsvp_p2mp_nexthop ()
#4 0x08180ddd in krt_floodnh_disassociate ()
#5 0x08173eed in krt_add ()
#6 0x08123677 in ?? ()
#7 0x00000002 in ?? ()
#8 0xbfbedef4 in ?? ()
#9 0xbfbedf00 in ?? ()
#10 0x0812366c in ?? ()
#11 0x087f8a80 in idr_decode__rbrt_msg_0 ()

#12 0x00000002 in ??

	 118	 Day	One:	Junos	Tips,	Techniques,	and	Templates	2011

Additional Resources

forums.juniper.net/jnet

J-Net is an interactive peer-based community dedicated to sharing
information, resources, best practices, and questions about Juniper
products, technologies, and solutions. Registration is free and you get
access to premium content such as these Day One books. You can post
questions and collaborate in the community forums, subscribe to
content via RSS, email, and customize your user interface. In addition,
there are regular promotional events in the community open only to
members, such as the Junos Tips and Techniques Contest that was the
basis for this book.

www.juniper.net/dayone

The Day One book series is available here for free in PDF format.
Select titles also feature a Copy and Paste edition for direct placement
of Junos configurations. (The library is available in eBook format for
iPads and iPhones from iTunes. For Kindles, Androids, Blackberrys,
Macs, and PCs visit the Kindle Store on your Kindle device. In addi-
tion, print copies are available for sale at Amazon or Vervante.com.)

www.juniper.net/techpubs/

Juniper Networks technical documentation includes everything you
need to understand and configure all aspects of Junos and all Juniper
Networks devices. The documentation set is both comprehensive and
thoroughly reviewed by Juniper engineering.

www.juniper.net/training/fasttrack

Take courses online, on location, or at one of the partner training
centers around the world. The Juniper Network Technical Certifica-
tion Program (JNTCP) allows you to earn certifications by demon-
strating competence in configuration and troubleshooting of Juniper
products. If you want the fast track to earning your certifications in
enterprise routing, switching, or security use the available online
courses, student guides, and lab guides.

www.juniper.net/books

Check out the complete Juniper Networks Books library.

	Front Cover
	Back Cover
	Title Page
	Copyright
	Forward
	About the Contributors
	About the Editors
	Table of Contents
	Conventions Used in This Book
	Day One: Junos Tips,Techniques,and Templates 2011
	Tip: Pre-configure Interfaces
	Tips: Managing Disk Space
	Tip: Verifying BGP Routing Policy Behavior
	Tip: Automatically Generate Output Timestamps While Running Commands
	Tip: Use Operational Scripts
	Tip: Using Remote Commit Scripts
	Tip: Use Junos Automation to Send SNMP Trap When Event Occurs
	Tip: Applying CoS in VPN
	Tip: Finding a Range of Prefixes in the Routing Table
	Tip: Viewing Additional Details About the Contents of a Configuration
	Tip: Viewing Additional Details About a Commit
	Template: All About Configuration Groups
	Tip: Set Idle Timeout for Root User
	Tip: Increase Terminal Screen Width
	Tip: View All Routes Except Those from a Particular Protocol
	Tip: Logging Policy Drops to a Specific Log File
	Tip: Troubleshooting Connectivity on the SRX
	Tip: Debugging Screens on the SRX
	Tip: Understand Filter Behavior and GRE Packet Flow
	Template: Using the Interface Range Command
	Tip: Commit Previous Configuration and Software Package
	Technique: Automatically Allow Configured BGP Peers in a Loopback Firewall Filter
	Tip: Accessing Online Help
	Tip: SNMP OIDs for SRX Monitoring
	Tip: Monitoring Router Alarm LEDs and Controls (craft-interface)
	Tip : Why is My Junos Device Alarm LED Status Red?
	Template: Pipe Commands
	Tip: Show Version and Haiku
	Tip: CLI History Search
	Tip: Unable to Access a Standby SRX?
	Tip: How to Chat Inside a Router Telnet Session with a Connected User
	Tip: Loading a Junos Factory Default Configuration
	Tip: Restart a Software Process
	Tip: Remote Wireshark Analysis
	Tip: Remote Wireshark/TShark Analysis Via SSH
	Tip: Emacs Shortcuts
	Template: 97 CLI Tips
	Technique: Port Mirroring on EX Switches
	Technique: Remote Port-mirroring to a UNIX Host
	Tip: Use “.x” Instead of “unit x” in Set Commands
	Tip: Junos MOTD Before/After Login
	Tip: Create a New Login Class and Add Users to It
	Tip: J-series and SRX HA Cluster Status Information
	Tip: Commit Confirm on a Clustered SRX
	Tip: Change Interfaces
	Tip: Wildcard Delete
	Tip: Searching a Large Configuration
	Tip: Make Sure You Haven’t Downloaded a Corrupted Junos Image
	Techniques: Junos Boot Devices and Password Recovery
	Technique: Replace a Missing Boot Device
	Tip: Hide Pieces of the Configuration
	Tip: How to View Built-in Configuration
	Tip: Preventing Other Users From Editing a Configuration While You're Still Configuring
	Tip: Logout a Connected User
	Technique: Automatic Junos Configuration Backup
	Tip: Quickly Synchronize System to NTP Server
	Tip: Firewall Support for NTP Status
	Tip: Configuration Loading on a Router from the Output of Show
	Tip: Junos Display Set
	Tip: Configure a Basic Firewall on SRX
	Technique: SRX CLI Management Plane Traffic (Telnet/SSH) Timeout Settings
	Tip: Layer 3 VPN Dynamic GRE
	Tip: Fixing Corrupted (Failed) Junos EX or SRX Software Using USB Port
	Tip: Interpreting Syslog Messages
	Tip: Send Syslog Messages with Different Facility Codes to the Same Syslog Host
	Tip: VRRP Fast Failover
	Tip: Copying Files Between SRX Clusters
	Tip: Connecting to the Secondary Node from the Primary Node on an SRX Cluster
	Tip: Gracefully Shutdown Junos Software Before Removing Power
	Tip: Connect Another Device Using Auxiliary Port
	Tip: Checking a Link Status Using Port Descriptions
	Technique: Monitor Interesting Commands Executed by Others in Real-time
	Tip: Suspend and Resume Trace File Monitoring
	Tip: Combine Match with Junos Syslog Capabilities
	Tip: Static Host Mapping
	Tip: Viewing Core Files

	Additional Resources

