
Junos® Fundamentals Series

Build upon a basic model

of QoS behaviors with the

levers and knobs that Junos

can use to influence each

of those behaviors.

By Guy Davies

DAY ONE: DEPLOYING BASIC QOS

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: DEPLOYING BASIC QOS

The demands being placed upon today’s networks are growing at an incredible rate.
Given the rapid increase in the number of attached devices, the explosion in traffic gen-
erated by these devices, and the convergence of legacy networks designed to carry a
single type of traffic in isolation – the old approach of simply overprovisioning to sup-
port the potential peaks of data is no longer commercially or technically feasible.

To stop this perfect storm of a log jam, Day One: Deploying Basic QoS gives you an over-
view of Quality of Service (QoS) concepts and then provides tools and techniques from
the Junos operating system toolbox to implement a comparatively simple class-of-ser-
vice configuration. It’s a start, it works, and it can be done in your test bed on day one.
And true to the principles of Day One network instruction, you’ll be guided through a set
of basic requirements and configuration tools using multiple templates and examples
from which you can derive your own valid configurations.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

Understand the principles of QoS, independent of any vendor’s implementation.

Identify the basic building blocks of a QoS implementation.

Identify common traffic behaviors and how they can be manipulated.

Construct combinations of the basic building blocks in order to induce a required

behavior.

“This book is a must have for anyone seeking to configure QOS in any Juniper device due to its

clarity, precision, and ease of use. It’s applicable to a wide range of engineers, from the Junos

novice all the way to the expert. Guy can’t help but share his immense knowledge and practical

experience, adding extra value to the topic and the book as a whole.”

 Miguel Barreiros, Senior Professional Services Consultant, Juniper Networks

7100 1333

ISBN 978-193677930-7

9 781936 779307

5 1 6 0 0

07500213

Day One: Deploying Basic QoS

By Guy Davies

Junos® Fundamentals Series

Chapter 1: Introducing QoS . 5

Chapter 2: Basic Junos QoS Concepts and Packet Flow Through
Routing Nodes .11

Chapter 3: Building a Basic QoS Implementation Using
Junos Software .23

Chapter 4: Examples .45

© 2011 by Juniper Networks, Inc. All rights reserved.
Juniper Networks, the Juniper Networks logo, Junos,
NetScreen, and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. Junos is a trademark of Juniper Networks, Inc.
All other trademarks, service marks, registered trade-
marks, or registered service marks are the property of
their respective owners.

Juniper Networks assumes no responsibility for any
inaccuracies in this document. Juniper Networks reserves
the right to change, modify, transfer, or otherwise revise
this publication without notice. Products made or sold by
Juniper Networks or components thereof might be
covered by one or more of the following patents that are
owned by or licensed to Juniper Networks: U.S. Patent
Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051,
6,333,650, 6,359,479, 6,406,312, 6,429,706,
6,459,579, 6,493,347, 6,538,518, 6,538,899,
6,552,918, 6,567,902, 6,578,186, and 6,590,785.

Published by Juniper Networks Books
Author: Guy Davies
Editor in Chief: Patrick Ames
Copyeditor: Nancy Koerbel
J-Net Community Management: Julie Wilder

ISBN: 978-1-936779-30-7 (print)
Printed in the USA by Vervante Corporation.
ISBN: 978-1-936779-31-4 (ebook)

Version History: v1 July 2011
 2 3 4 5 6 7 8 9 10 #7500213

About the Author
Guy Davies is a Senior Solutions Consultant in the
Global PS Mobile Core Networks organization at
Juniper Networks. He has worked for Juniper Networks
for five years in the EMEA and Global PS organizations,
helping Service Providers and large enterprises to build
networks delivering large scale, high availability, and
granular quality of service to their customers. Prior to
Juniper Networks, Guy spent six years working for Telin-
dus, a Systems Integrator, and prior to that five years at
UUNET in the UK. In these roles Guy has delivered large
scale MPLS and IP core and provider edge networks,
subscriber management platforms, and AAA platforms,
all of which have placed an ever increasing emphasis on
differentiated Quality of Service. Guy is JNCIE-M #20.

Author’s Acknowledgments
I would like to thank my family for their apparently
inexhaustable patience. I would also like to thank the
Juniper Networks Books team for their support and drive
to get this book written and knocked into shape.
Without them, it wouldn’t have been completed.
Finally, I would like to thank my colleague, Miguel
Barreiros, for his advice and review of this book.

This book is available in a variety of formats at: www.
juniper.net/dayone, as well as on iTunes and Amazon.

Send your suggestions, comments, and critiques by email
to dayone@juniper.net.

	 ii	

What You Need to Know Before Reading This Book

�� You should have a solid understanding of the principles of packet-
based networking.

�� It is beneficial if you are familiar with the Junos Command Line
Interface. It is also useful to read other Day One books in the
Junos Fundamentals Series.

After Reading This Book, You’ll be Able To

�� Understand the principles of QoS, independent of any vendor’s
implementation.

�� Identify the basic building blocks of a QoS implementation.

�� Identify common traffic behaviors and how they can be manipu-
lated.

�� Construct combinations of the basic building blocks in order to
induce a required behavior.

Why QoS?

The demands being placed upon networks today are growing at an
incredible rate. With the rapid increase in the number of attached
devices, the explosion in traffic generated by each of those devices
(particularly from video applications) and the convergence of multiple
legacy networks designed to carry a single type of traffic in isolation, the
old approach of simply overprovisioning to support the potential peaks
of data is no longer commercially or technically viable. Subscribers of
certain services (e.g. telephone services) demand that those services are
always available and also of an acceptable quality. In order to ensure
that availability and quality, it is first necessary to group traffic into
classes where traffic in a single class requires the same treatment, and
then to ensure that treatment is delivered consistently to all traffic in that
group. This consistency is required not just in a single device but in all
devices that the traffic crosses from source to destination.

This book aims to give the reader an overview of the terminology of QoS
and then to provide some tools and techniques from the Junos operating
system to allow the reader to implement a comparatively simple class-of-
service configuration. The title of this book is Deploying Basic QoS, and
it is certainly not an attempt to provide a complete insight into every
class-of-service option on every single platform sold by Juniper Net-

	 	 iii

	 iv	 	

works. For that, the reader can refer to the documentation available at
http://www.juniper.net/techpubs/software/junos.

This book is intended to guide the reader through the basic require-
ments and configuration tools, using templates and examples from
which they can derive their own valid configurations. There are plenty
of aspects of class-of-service configuration that are completely absent
from this book. These are left for more advanced publications.

MORE?� A fabulous resource for QoS is the newly published QoS Enabled
Networks: Tools and Foundations, by Peter Lundqvist and Miguel
Barreiros, (John Wiley & Sons, 2011, ISBN 978-0-470-68697-3), two
senior engineers at Juniper Networks. For more information about the
book and its contents, visit your favorite online bookseller, or www.
juniper.net/books.

Chapter 1

Introducing QoS

Quality of Service Versus Class of Service .6

What are Behaviors? . 7

Loss . 7

Latency .8

Jitter .9

Summary . 10

	 6	 Day	One:	Deploying	Basic	QoS

This first chapter examines the fundamental principles of Quality of
Service (QoS), starting with the basic idea of the end-to-end user
experience and graduating to the way in which QoS is implemented as
a series of hop-by-hop behaviors. The chapter builds a basic model of
QoS behaviors, including those which have been standardized, and
describes the “levers” that can be used to influence each of those
behaviors.

Quality of Service Versus Class of Service

There are many possible definitions of QoS, but for the purposes of
this book, Quality of Service (QoS) is the manipulation of aggregates
of traffic such that each is forwarded in a fashion that is consistent
with the required behaviors of the applications generating that traffic.

From an individual user’s point of view, QoS is experienced on the
end-to-end (usually round trip) flow of traffic. However, it is imple-
mented as a set of behaviors at each hop – this is an important distinc-
tion that is absolutely fundamental to QoS, and it is critical that the
reader understands it clearly.

In effect, this means that a single hop with no configured QoS can
destroy the end-to-end experience and nothing that subsequent nodes
do can recover the end-to-end quality of experience for the user. That
doesn’t mean that QoS must be configured at every hop. However, it’s
critical to understand that a single congested hop can be the undoing of
the most intricate QoS design.

On the other hand, Class-of-Service (CoS) is a configuration construct
used within the Junos operating system to configure an individual node
to implement certain behaviors at that node, such that the end-to-end
QoS is consistent with the desired end-to-end user experience or
application behavior.

Each class is associated with an aggregate of traffic that requires the
same behaviors as it flows through the network device. Classes do not
relate implicitly to traffic belonging to a single application; rather, any
application requiring the same behaviors generates traffic belonging to
the same class.

TIP Does the difference between QoS and CoS make sense? If not, reread
these few introductory paragraphs again. The concept is the founda-
tion for the entire book and is often obfuscated in QoS literature.

	 Chapter		1:		Introducing	QoS	 7

What are Behaviors?

You have already read about behaviors and you just started Chapter 1.
That’s because they are a core concept in QoS. While the definition of
behaviors should be familiar, the concept, in terms of QoS, may not.
Let’s take a little time to explore exactly what is a QoS behavior.

A QoS behavior describes the way in which a particular flow of traffic
expects to be handled as it passes through each network device. This is
usually expressed in terms of three characteristics that are particularly
relevant to certain classes of traffic. The three characteristics are:

�� Loss: This is the failure of a packet, which was transmitted into
the network at its source, to reach its intended destination.

�� Latency: This is the delay between the transmission of a packet
into the network at its source and its arrival at its intended
destination.

�� Jitter: This is the variation in latency between consecutive
packets in a single flow.

These three characteristics are generally used to describe the quality of
service associated with traffic belonging to a particular application
travelling end-to-end. They are also the characteristics that you can
manipulate (sometimes indirectly) on a hop-by-hop basis in order to
create the per-hop behaviors you want, and to ensure the traffic
receives the desired end-to-end QoS.

Needless to say, each of the three characteristics can have a significant
impact on particular applications. Let’s investigate each one.

Loss

This is the failure of a packet, which was transmitted into the network
at its source, to reach its intended destination. Loss can be induced by
many factors including errors, link and node failures, and congestion
in the network, or, indeed, by an intentional action on any of the nodes
in the network. While it is important to understand the actual cause of
the loss in order to be able to effectively manipulate it, in terms of the
perceived QoS, the cause of loss is generally unimportant.

That’s because when a packet is lost, there are two possible conse-
quences: either the loss can be ignored by the application (maybe the
application is able to deduce the information in the lost packet, or the

	 8	 Day	One:	Deploying	Basic	QoS

application is tolerant of a single loss), or the packet must be transmit-
ted again. If the packet must be transmitted again, either the transport
layer provides a mechanism for reliable transmission (for example,
TCP) or it is the responsibility of the application to request a re-trans-
mission.

An example of an application that may be tolerant of loss is audio, as
shown in Figure 1.1. A lost packet in an audio stream may result in a
very short silence, or an audible pop, and in this sense, the application
“fails” as shown in the lower line of symbols; but the human ear and
brain are able to compensate for these small gaps or distortions, so it is
unnecessary to compensate within the network for low-level packet
loss in an audio application.

loss

X
X

Figure�1.1	 Simplified	Representation	of	the	Impact	of	Loss	on	a	Digitized	Analogue	Signal

Conversley, the banking system and its network is incredibly intolerant
of loss and is an example of an application that can not tolerate loss.
Imagine if the data regarding the transfer for your monthly salary is in
the packet that is lost, and you lose a zero at the end. Your 1000
becomes a miserly 100. This cannot simply be ignored; it must be
identified and the packet must be retransmitted.

Latency

Latency is the delay between transmission and receipt of a packet. As
shown in Figure 1.2, latency in many applications is of little conse-
quence.

	 Chapter		1:		Introducing	QoS	 9

latency

X
X

Figure�1.2	 Simplified	Representation	of	Causes	and	Impact	of	Latency

For example, the transmission of Internet radio is so heavily impacted
by encoding delays that the latency introduced by the network is not
likely to be considered a significant additional problem. The time-
checks given out by the DJ are delayed anywhere between 1 and 15
seconds anyway, and are so variable as to be of somewhat limited
value.

You know how disruptive it is when latency is experienced on a voice
call, however, because it’s necessary to wait for a quiet period in order
to start speaking. The likelihood of two people talking at the same
time always seems quite high. The human ear and brain can tolerate
around 200ms of latency with no noticeable trouble. At above 500ms,
the delay becomes noticeable enough to be a problem, which makes
the call more difficult.

NOTE� Both of these examples are audio streams, but the unidirectional
nature of Internet radio makes it much more tolerant of latency,
whereas with an interactive application the latency chips away at the
interactivity until it can almost be static.

Jitter

Jitter is the variation in the amount of latency in consecutive packets,
and it has the most significant impact on some of the most highly
valued services, such as voice and video services. Voice services, in
particular, rely upon the digitization of the analogue voice signal into
chunks of data that can be transmitted in packets and then, at the far

	 10	 Day	One:	Deploying	Basic	QoS

end, reassembled into an analogue stream. Normally, that digitization
process produces a steady stream of packets with a constant time
between each packet. At the receiving end, there is a buffer of fixed
length into which packets are placed until enough packets are present
to decode the next section of analogue signal. If, during transmission,
the latency of consecutive packets varies such that the time between the
arrival of consecutive packets differs too much, then the conversion
back to the analogue signal fails because the required packets are not
present in the buffer at the time required for them to be converted into
a meaningful analogue signal. Consider Figure 1.3 as a visual example.

abnormal latency

X
X

average latency jitter

Figure�1.3	 Simplified	Representation	of	the	Impact	of	Jitter	on	a	Digitized	Analogue	Signal

You can see in Figure 1.3 that the impact of jitter can be reduced by
extending the de-jitter buffer. It is assumed that the jitter will be less
than the maximum length of the de-jitter buffer. The downside of this
approach is that it implicitly adds latency, which, as already discussed,
is also bad for interactive voice applications.

Summary

That’s it. Three little behaviors that are the sum of QoS around the
world and around the world’s networks. Come back to this chapter
and its simplified definitions when, or if, you get confused as you try to
adjust individual nodes on your network to fine-tune for the many
applications and the three traffic behaviors they may exhibit.

Chapter 2

Basic Junos QoS Concepts and Packet
Flow Through Routing Nodes

The Building Blocks of a Junos CoS Configuration 12

Packet Flow Through the CoS Functions . 18

Packet Flow Through Hardware . 19

Summary . 22

	 12	 Day	One:	Deploying	Basic	QoS

Chapter 1 explained the basic concepts of QoS, CoS, and Behaviors.
Now Chapter 2 examines the basic building blocks of a Junos CoS
configuration, and then shows the packet flow through the various QoS
functions, which are (almost) universal in Junos routing, switching, and
security platforms. It then maps those QoS functions onto the packet
flow through some of the different Junos hardware platforms, focusing
on a few current platforms.

TIP� Remember that each network device behaves more or less independent-
ly of all other network devices, so the only things you can actively
influence are per-hop behaviors.

The Building Blocks of a Junos CoS Configuration

In subsequent sections, this book focuses on Junos CoS as implemented
on the M/T Series Routing Nodes, the MX Series Ethernet Services
Routers, and the SRX Security Nodes. These are simply used as current
examples of core, edge, and security nodes.

In every Junos CoS implementation there are certain functions that are
required in order to be able to influence the behavior of outbound
packets on a particular interface.

NOTE Each vendor’s networking equipment implements the control of these
functions in different ways, and may use slightly different terminology.
The terminology used in this book, and defined in this chapter, is the
terminology used in Junos configurations, but the explanations should
be sufficiently vendor-agnostic as to be broadly applicable to different
vendors’ equipment.

Let’s first list our key Junos CoS functions that can influence the
behavior of outbound packets, and then devote a short section to each:

�� Forwarding Class

�� Classification(s)

�� Policing

�� Random Early Discard (RED)

�� Shaping

�� Scheduling

�� Remarking

	 Chapter		2:	Basic	Junos	QoS	Concepts	and	Packet	Flow	Through	Routing	Nodes	 13

Forwarding Class

A forwarding class is a label, used entirely within a network node,
which is used to identify all traffic that requires a single behavior when
leaving that node. Forwarding classes do not explicitly appear outside
a node, although if the QoS configuration of all nodes in a network is
consistent, it can easily be derived from information in packet headers.

Classification

Classification is the act of identifying the class to which a packet
belongs. It is usually initially performed on ingress to each node,
although a packet may be reclassified at various points on its path
through a network node.

In Junos there are three main approaches to classifying packets, which
vary in their degree of flexibility and in the complexity of the required
configuration: Interface Based Classification, Behavior Aggregate (BA)
Classification, and Multifield (MF) Classification. These approaches
are not all mutually exclusive, and, in some combinations, can be
applied in series to get a less granular first-pass behavior, followed by a
more granular reclassification of a subset of the traffic.

Interface	Based	Classification

If all traffic arriving on a single interface is known to be associated
with a single class then the easiest mechanism to classify this traffic is
simply to associate all traffic arriving on the interface with the relevant
forwarding-class.

While somewhat trivial to implement, this method assumes that all
traffic arriving on the interface is of the same class. There is no
inherent mechanism to indicate any exceptions, so it is very inflexible.
It can be used in conjunction with MF classifiers, however, to provide
more granular exceptions to the default interface classification if
required.

TIP This mechanism is also useful if the upstream node is untrusted and
you wish to bleach all traffic coming in by applying a single class
(usually Best Effort in this situation).

	 14	 Day	One:	Deploying	Basic	QoS

Behavior	Aggregate	Classification

Behavior aggregate classification (BA) provides a good balance be-
tween flexibility and complexity. It is particularly attractive where the
traffic being classified is being transported in large aggregates (for
example, in the core of a network, where traffic associated with many
unique applications passes over a single link, making Multi-Field
classification unattractive). BA Classification relies upon markings
placed in the headers of incoming packets: either Ethernet frames, IPv4
or IPv6 packets, or MPLS frames. Each of these packet or frame types
includes a field in the header specifically designated for the indication
of a class to which this packet has been previously assigned.

In Ethernet (using 802.1Q VLAN frames) there are three 802.1p bits.
In IPv4 packets, there is the Type of Service Byte from which you can
either use the three precedence bits, or six bits to indicate the DiffServe
Code Point (DSCP). IPv6 has six bits of the IPv6 DSCP and MPLS has
the three experimental bits.

NOTE There are actually 8 bits in IPv6, but two have been reserved for future
use.

NOTE To use the term experimental bits for MPLS is something of a misno-
mer, since this utilization of these three bits is no longer experimental
in any sense. No other use has been proposed for these three bits, and
there are efforts in place to rename them to something more appropri-
ate to their current function.

It’s important to note that the main constraint with this model is that
the upstream node must be trusted to correctly (and fairly) mark
packets. If the upstream node cannot be trusted then it could be a
concern that the node would mismark traffic into a class that would
receive a higher QoS than it requires, or for which the owner of the
upstream node has paid.

Multifield	(MF)	Classification

The most flexible, but also the most complex, classification to config-
ure and maintain is the Multifield (MF). It uses firewall filters (also
known as access-lists) to identify arbitrary attributes of an IP packet (it
is less commonly applicable to non-IP traffic types) and places traffic
into a particular traffic class based on the contents of the IP packet.

	 Chapter		2:	Basic	Junos	QoS	Concepts	and	Packet	Flow	Through	Routing	Nodes	 15

Since this approach is effectively only constrained by the characteris-
tics that can be matched in a firewall filter, it is possible to be very
granular in the choice of traffic class to which the packet belongs.
However, granular choices require comparatively complex filters,
which may have to be customer specific. This degree of complexity
and administrative overhead makes the use of MF classifiers particu-
larly attractive where the upstream node is not trusted (or not able) to
mark the packets, and the requirement to apply QoS based on arbi-
trary parameters is strong.

In addition, MF classifiers can be used to modify the forwarding-class
selected by a BA classifier or an interface classifier. Thus, as mentioned
before, it is possible to make a rough classification based on the BA
markings (or on an interface marking) and then reclassify a subset of
the traffic based on arbitrary attributes in the IP headers.

Policing

Policing is the method of applying a hard limit to the rate at which
traffic can access a resource (for example, upon entry to a node or to a
queue on egress). Since a policer constrains access to the node or
queue, once a decision is made that a packet is non-conforming and
that it should not gain access to the protected resource, that packet will
be dropped (or reclassified). This hard-drop behavior can have a
negative impact, particularly on TCP traffic, and particularly when the
policer is run consistently at its limit.

While it is possible to reclassify packets based on a policer, it is impor-
tant to be very careful to avoid reordering of packets in applications
that may be sensitive to the order in which packets are received.

In Junos, policing can operate in three modes:

�� A simple policer operates based on a single rate-limit and a single
burst-size. This is also known as a single-rate, two-color policer.

�� A single-rate, three-color policer uses a single rate-limit but has
two burst sizes. This provides a mechanism to create three
loss-priorities (as described for Assured Forwarding in
RFC2597).

�� Two-rate, three-color policers use two rates, a committed rate
and a peak rate, to achieve the same results as a single-rate,
three-color policer.

	 16	 Day	One:	Deploying	Basic	QoS

Random Early Discard

Random Early Discard (RED), also known as Random Early Detec-
tion, is a congestion avoidance mechanism. It helps to mitigate the
impact of congestion (specifically with TCP-based traffic).

MORE?� For a really thorough review of the behavior of TCP in the presence of
congestion, and why RED can help avoid some of the worst aspects of
that behavior, see QoS Enabled Networks: Tools and Foundations, by
Peter Lundqvist and Miguel Barreiros, (2011, John Wiley & Sons), at
your favorite online bookseller or via www.juniper.net/books.

By selecting random TCP packets from a queue and discarding them,
the end point that was awaiting delivery of that packet fails to send an
acknowledgement (or, if that packet was an acknowledgement, the far
end does not receive the acknowledgement) for the packet. This
triggers retransmission of the packet and the reduction of the transmis-
sion window size (and as a consequence the speed with which the
source transmits TCP packets). The random nature of the selection of
the packets to be dropped ensures that no single flow of traffic, appli-
cation, or source is unfairly penalized and every source continues to get
its “fair share” of the available capacity on a link that is close to
congestion.

Since the TCP source from which the packet was dropped slows down
the rate at which it transmits packets, the degree of congestion is
reduced.

Thus, you have a mechanism that is “fair” to all. But QoS is not
necessarily about being fair to all, it’s about ensuring that high priority
(high value, loss-, latency-, or jitter-sensitive) traffic is given priority. In
order to manipulate the rate at which packets belonging to particular
forwarding-classes are dropped, it is necessary to apply a weight to
RED for each forwarding-class. This process is known as Weighted
RED (WRED). It is particularly important to apply a weight to RED
in order to avoid dropping packets in forwarding-classes that are
particularly intolerant of loss (for example, expedited forwarding and
assured forwarding).

NOTE Expedited forwarding and assured forwarding are defined behaviors,
the definitions of which can be found in RFC3246 and RFC3260
respectively.

	 Chapter		2:	Basic	Junos	QoS	Concepts	and	Packet	Flow	Through	Routing	Nodes	 17

Often, the traffic associated with applications that are particularly
intolerant of loss, latency, and jitter are transported in UDP. In this case,
the application of RED is counterproductive since it damages perceived
QoS of the application. In addition, since UDP has no built-in mecha-
nism to identify the loss of a packet and modify its rate of transmission,
the packet is either simply lost as a consequence, (reducing the perceived
QoS) without having any significant impact on the throughput, or
worse, the application identifies the loss and demands retransmission of
the packet anyway, so the packet is then seen twice, potentially increas-
ing the congestion.

Shaping

Shaping is the application of a limit to the rate at which traffic can be
transmitted. Unlike policing, it acts on traffic that has already been
granted access to a queue but which is awaiting access to transmission
resources. Traffic that does not conform to the shaper’s criteria is
generally held in the queue until it does conform, and no explicit
constraint is placed upon more traffic entering the queue (as long as the
queue isn’t entirely full). Therefore, shaping can be less aggressive than
policing and can have fewer of the negative side effects.

A shaper is normally defined in terms of a Committed Information Rate
(CIR) and/or a Peak Information Rate (PIR).

Scheduling

Scheduling is the act of deciding the order in which to place packets onto
the wire based upon the class to which they belong (or the queue in
which they’re waiting). Given that you have multiple queues, all of
which may contain packets waiting to be transmitted, but you only have
a single serial transmission media, you have to decide which queue to
service first, for how long, and with what frequency you return to check
whether each queue has traffic to send.

Remarking

As mentioned above, Ethernet, MPLS, IPv4, and IPv6 packets all have a
field in the header that can be used to inform another node about a
classification decision made earlier in the path. Remarking is the act of
(re)placing a value in the header of an outgoing packet, which identifies

	 18	 Day	One:	Deploying	Basic	QoS

the class to which the packet was assigned by the transmitting router.
Subsequent nodes can use this marking to easily and consistently
classify the packet using a BA classifier. It is possible to remark each of
the packet header types using each of the marking types (IEEE 802.1p,
MPLS EXP, IPv4 Precedence, IPv4 DSCP, or IPv6 DSCP) that can be
used by BA Classifiers.

Packet Flow Through the CoS Functions

Figure 2º.1 shows the flow of the packet through the various CoS
functions in Juniper Networks routing, switching, and security nodes.
At the top are the functions performed on the ingress hardware moving
to the right, while along the bottom are the functions performed on the
egress hardware with the packet moving to the left. The box in the
middle represents the storage of the forwarding-class and loss-priority,
the two values that can be manipulated during the flow of the packet
through the router, and based ultimately upon which treatment of the
packet (in the last two boxes) is undertaken.

Ingress

Egress

BA
Classifier

Policing
(Ingress)

Multifield
Classifier

Forwarding
Policy

Rewrite
Marker

Multifield
Classifier

Policing
(Egress)Scheduler Shaper RED

Forwarding Class

Loss Priority
Fabric

Figure�2.1	 Junos	CoS	Processing

You should recognize the labels on almost all of the boxes from the
descriptions given in this chapter and in Chapter 1. If not, quickly
review their functionality.

	 Chapter		2:	Basic	Junos	QoS	Concepts	and	Packet	Flow	Through	Routing	Nodes	 19

NOTE The BA Classifier box in Figure 2.1 includes both the BA Classifier
function as described and the interface classifier. It is not possible to
apply both styles of BA classifier simultaneously to a single interface.

NOTE In Junos, the Policing (Ingress) and Multifield Classifier are implement-
ed using the same firewall filter construct, so a single firewall filter can
act first to police any non-conforming traffic then to apply a forward-
ing-class and loss-priority to any conforming traffic as defined in the
firewall filter actions.

Before being transmitted onto the switch fabric of the network device,
the traffic can be subjected to a Forwarding Policy. This is implement-
ed as another firewall filter, which acts upon traffic as it is about to
enter the switch fabric based upon information in the forwarding tables
along with the existing forwarding-class and loss-priority. Note the
bidirectional arrows center Figure 2.1 between the forwarding policy
and the box in the center of the diagram.

On egress, it is again possible to manipulate the forwarding-class and
loss-priority of the outgoing packet before it is queued. This is
achieved using another Policing (Egress)/Multifield Classifier combina-
tion implemented as a firewall filter, exactly as on the ingress.

Once policed and classified for a final time, the traffic is queued where
it is then acted upon by the RED profile, any Shaper, and then the
Scheduler.

Finally, just before transmission onto the wire, any markings in the
Ethernet, MPLS, IPv4, or IPv6 headers are modified by a Rewrite rule.
This helps a downstream networking device to make a classification
decision more easily, even if the packet is now part of a massively
aggregated flow.

Packet Flow Through Hardware

The packet forwarding architecture of Juniper Networks routers has
evolved significantly since the M40 was first released in 1998. How-
ever, the basic architecture of the routers has not changed. Every router
is split into three elements, the control plane (this function is performed
by one or more routing engines), the forwarding plane (this function is
performed by one or more packet forwarding engines), and the services
plane (this function is performed by one or more Services PICs or
DPCs). The packet flow through these elements is shown in Figure 2.2.

	 20	 Day	One:	Deploying	Basic	QoS

Master RE

Services PICs/DPCs

Control Traffic

Backup RE

Packet Forwarding Engine
User TrafficUser Traffic

Figure�2.2	 Packet	Flow	Through	the	Routing	Node

The packet forwarding plane (PFE) is the element that has evolved the
most – from a single, shared memory architecture on the M40 and the
subsequently released M20, M5, M10, M7i, and M10i, to the M160
and M120, with the PFEs on the Switch Fabric Cards, to the M320, T
series, and MX series where one or more complete PFE complexes
were placed on the linecards and multiple switch fabrics provided
highly resilient paths between the PFEs – the concept has remained the
same: user traffic must be forwarded independently of the load on the
control plane (the RE).

With the development of each of the new PFE hardware, class-of-ser-
vice has been enhanced, culminating in the current range of MX3D
platforms based on the Junos Trio chipset (the platform that provides
scaling in the number of services delivered at high capacity to a large
number of subscribers). And it is that scaling of subscribers, services,
and bandwidth that places increasing focus upon the QoS design.

At a very high level, the packet flow through the hardware is consistent
between each of the platforms. The number of PFE complexes and
PICs on a single linecard may differ, as may the number of switch
fabrics, as shown in Figure 2.3, but the concept remains the same.

	 Chapter		2:	Basic	Junos	QoS	Concepts	and	Packet	Flow	Through	Routing	Nodes	 21

PIC PFE

PIC PFE

PIC PFE

PIC PFE

PFE PIC

PFE PIC

PFE PIC

PFE PIC

Switch
Fabric

Figure�2.3	 PFE	Complexes	and	PICs	on	a	Linecard

The packet flow through hardware follows this sequence:

�� A packet arriving on a PIC is parsed (at Layer 2) and the packet,
along with information relating to the Layer 2 information
obtained by the PIC, is passed to the PFE.

�� The ingress PFE then parses the remaining header information,
creating a fixed length block of metadata describing the packet
and, depending upon the router and linecard, may break the data
portion of the packet into chunks for temporary storage.

�� Within the PFE, the packet is classified with a forwarding-class
and packet loss priority. In addition, a decision is made regarding
the PFE to which the packet must be forwarded. This decision is
based not only on the destination of the packet, but also on any
firewall filters that may be matched by the packet, the forwarding-
class, and the packet loss priority (PLP) of the packet.

	 22	 Day	One:	Deploying	Basic	QoS

�� The ingress PFE then requests resources from the egress PFE in
order to transmit the packet and metadata across the switch
fabric. The packet may be sent over multiple switch fabrics.

�� At the egress PFE, the packet is reassembled, ensuring that the
entire packet is correctly assembled and that packets are returned
to the order in which they were transmitted (in the case that they
became re-ordered over the switch fabric).

�� The egress PFE then performs exactly the same steps, parsing the
packet – making a forwarding decision based on egress policers,
drop-profiles, schedulers, and shapers – and finally rewriting the
headers so that the packet can be transmitted onto the wire with
the appropriate markings.

You might have noticed from Figure 2.3 that even if a packet arrives on
a PIC in one linecard, and is destined for another PIC in the same
linecard, that packet will cross the switch fabric. The only exception is
the case where a packet arrives on one port on a PIC and is destined for
another port on the same PIC, in which case, on some platforms, the
packet takes the shortcut between the ingress functional blocks of the
PFE and the egress functional blocks of the same PFE. In all cases,
however, the packet must go up to the PFE in order to be switched
between ports.

Summary

So now you should now have a clear understanding of the basic
elements that allow you to manipulate QoS, the behaviors that these
elements influence, the hardware functions on which they are imple-
mented, and in which order they are implemented in Juniper Networks
platforms.

Next, we move on to take a look at exactly how you configure each of
these elements in order to build a relatively simple, but complete, CoS
configuration in Junos.

Chapter 3

Building a Basic QoS Implementation
Using Junos Software

Code Points .24

Choosing a Classification Approach .25

Ingress Policers .29

Forwarding Table Policy .32

Egress Policers .33

Drop-profiles .35

Scheduling and Shaping .39

Rewrite Rules .43

Pulling it All Together . 44

	 24	 Day	One:	Deploying	Basic	QoS

This chapter describes how to take each of the basic QoS functions and
combine them at various points in the packet flow in order to deliver a
consistent and flexible QoS design.

Each section includes a template configuration that could be used to
configure that function. The templates contain variables in the form:

 $variable_name$

These variables must be replaced with valid values in order to complete
the configuration. Some elements may appear multiple times in a valid
configuration, but in the interests of brevity, will appear only once in
the template.

As a point of reference, Figure 3.1 is the topology this book uses. Your
network will, of course, be different, but if you can build a follow-along
test bed mimicking this simple topology, you should be able to better
follow along as a lab exercises.

P

P PPE

BNG

PE

BNG

Figure�3.1	 Topology	Used	for	This	Book

Code Points

In order to begin our QoS implementation, first it’s necessary to identify
which type of code points you will be using. It is highly likely that in
your P routers, and on core facing interfaces on your PE routers, you
will be using BA classification. Therefore, you must decide whether you
need to specify aliases for your code points – aliases simply provide a
human friendly name for a numeric value. These names may be easier
to remember or more easily associated with particular forwarding-
classes, but they are entirely optional. A default set of aliases is pro-
vided for each of the marking types.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 25

In general, it isn’t necessary to create your own aliases, but should you
want to, the template for configuring aliases is as follows:

class-of-service {
 code-point-aliases {
 $marking_type$ {
 $alias$ $code_point_bits$;
 }
 }
}

Choosing a Classification Approach

For each ingress interface, it is necessary to choose between the three
possible classification approaches:

�� Interface Classfiers

�� Multifield (MF) Classifiers

�� Behavior Aggregate (BA) Classifiers

While Chapter 2 discussed the different compromises between com-
plexity of administration and flexibility of function, the examples
below demonstrate the use of each style of classifier in addition to
pointing out where it is used and why that choice was made.

Configuration Template for Interface Classification

In the following template, you can see the forwarding-class $class_
name$ being applied to a logical interface $interface_name$.$unit_
id$. You should note that this is all applied under the [edit class-of-
service] hierarchy level:

class-of-service {
 forwarding-classes {
 class $class_name$ queue $queue_number$;
 }
 interfaces {
 $interface_name$ {
 unit $unit_id$ {
 forwarding-class $class_name$;
 }
 }
 }
}

	 26	 Day	One:	Deploying	Basic	QoS

Notice, too, that there is a template for the definition of forwarding-
classes (the configuration options for forwarding-classes are discussed
in more detail later in this chapter). The forwarding-classes template
element is included here purely to indicate that it is linked to the
$class_name$ used in the interface configuration.

Configuration Template for Behavior Aggregate Classification

This template shows the three elements required to configure and apply
a Behavior Aggregate classifier. The first element is the ubiquitous
forwarding-classes definition:

class-of-service {
 forwarding-classes {
 class $class_name$ queue $queue_number$;
 }
 classifiers {
 $marking_type$ $classifier_name$ {
 class $class_name$ {
 loss-priority $loss_priority$ code-points [$code_points];
 }
 }
 }
 interfaces {
 $interface_name$ {
 unit $unit_id$ {
 classifiers {
 $marking_type$ $classifier_name$;
 }
 }
 }
 }
}

NOTE The forwarding-classes only have to be defined once for the entire
configuration. They are repeated here simply to show that they are
required for each of the three methods.

For the second element, each classifier is associated with a specific
$marking_type$ (ieee-802.1, exp, inet-precedence, dscp, or dscp6)
and for each code-point, or set of code-points, a forwarding-class
$class_name$ and a loss-priority $loss_priority$ are applied to the
packet.

And the third element required is the application of the classifier to a
logical interface $interface_name$.$unit_id$. The entire configura-
tion is applied under the [edit class-of-service] hierarchy level.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 27

Configuration Template for Multifield Classification

Multifield classifiers are somewhat implementationally different than
the other two types of classifiers described, since the majority of the
configuration is implemented under the [edit firewall] and [edit
interfaces] hierarchy levels (only the definition of the forwarding-
classes is implemented under the [edit class-of-service] hierarchy
level):

firewall {
 family inet {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 forwarding-class $class_name$;
 $other_actions$;
 }
 }
 }
 }
}
interfaces {
 $interface_name$ {
 unit $unit_id$ {
 family inet {
 filter {
 input $filter_name$;
 }
 }
 }
 }
}
class-of-service {
 forwarding-classes {
 class $class_name$ queue $queue_number$;
 }
}

Here, the MF classifier is implemented as a firewall filter. The action
applied to matching traffic is to place it into a specified forwarding-
class.

This firewall filter is applied directly to the logical interface under the
family inet or family inet6 hierarchy as an input filter.

	 28	 Day	One:	Deploying	Basic	QoS

Defining Your Classes

Next, you must define your forwarding-classes and how they are
mapped to queues. Junos supports up to 32 forwarding-classes, but
the maximum number of queues to which they can be mapped is
eight. Clearly, this means that you must have a four-to-one mapping
of forwarding-classes to queues. It’s possible to differentiate
between multiple forwarding-classes in a single queue only based on
the drop-profile (WRED) applied to each forwarding-class.

WARNING If there are more than eight forwarding-classes, therefore one or
more queues have more than one forwarding-class associated with
each, then all forwarding-classes associated with a single queue
must use the same scheduler.

The simplest approach is to use a one-to-one mapping from a
forwarding-class to a queue. Eight forwarding-classes are usually
adequate and the examples used in this book focus on that model.

TIP The temptation is always to say, “I have traffic from this application
that must go into this forwarding-class, therefore I will name the
forwarding-class after the application.” It is strongly recommend
that you resist that urge. It is much better to name the forwarding-
classes after behaviors so that there is no confusion when traffic
from another application, which requires the same behavior, is
placed into the same forwarding-class. For example, if a queue is
called video, but other traffic requiring moderate latency, very low
jitter, and moderately low loss is placed into that queue, it can prove
confusing.

A sample configuration template for forwarding-classes:

class-of-service {
 forwarding-classes {
 class $class_name$ queue $queue_number$ priority $fabric_priority$;
 queue $queue_num$ $class_name$ priority $fabric_priority$;
 }
}

Note that only one of the two configuration mechanisms shown
here should be used for all forwarding-classes in any single configu-
ration.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 29

Ingress Policers

It is sometimes necessary to ensure that upstream nodes are sending
traffic that complies with the contract in place. In order to ensure that
the upstream node is adhering to the contract, it is possible to police
traffic coming into the network node. This is particularly useful at the
boundary between a customer edge device (CE) and a provider edge
device (PE) to ensure that the customer is only sending the agreed
volume of traffic (possibly per agreed class, as defined using BA mark-
ings).

The Junos operating system provides a number of different models for
policing on ingress. The main models are:

�� Single-Rate Two-Color Marking

�� Single-Rate Three-Color Marking

�� Two-Rate Three-Color Marking

Single-Rate Two-Color Marking (Policing)

This uses a single value to define the acceptable traffic rate along with a
burst size. Above the defined rate, the traffic is considered to be out-of-
contract (Red). Below this rate, the traffic is considered to be in-contract
(Green). Out-of-contract traffic can be marked (reclassified) or discard-
ed immediately. A configuration template for Single-Rate Two-Color
Marking (Policing) is as follows:

firewall {
 policer $policer_name$ {
 if-exceeding {
 bandwidth-limit PIR;
 burst-size-limit $burst_size$;
 }
 then $action$;
 }
 family $family_name$ {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 policer $policer_name$;
 }
 }
 }
 }

	 30	 Day	One:	Deploying	Basic	QoS

}
interfaces {
 $interface_name$ {
 unit $unit_id$ {
 family $family_name$ {
 filter {
 input $filter_name$;
 }
 }
 }
 }
 $interface_name$ {
 unit $unit_id$ {
 family $family_name$ {
 policer $policer_name$;
 }
 }
 }
}

Single Rate Three-Color Marking (srTCM)

Single-Rate Three-Color Marking uses a committed information rate
(CIR), a committed burst size (CBS), and an excess burst size (EBS).
Traffic within the CIR is Green, traffic above the CBS but within the
EBS is Yellow. Traffic above the EBS is Red. A different packet loss
priority (PLP) can be applied to each of the three colors. Green is
assigned to low PLP, yellow is medium-high PLP, and red is high PLP.
A configuration template for Single-Rate Three-Color Marking is as
follows:

firewall {
 three-color-policer $tcm_policer_name$ {
 single-rate {
 (color-aware|color-blind);
 committed-information-rate CIR;
 committed-burst-size CBS;
 excess-burst-size EBS;
 }
 logical-interface-policer;
 action {
 loss-priority high then discard;
 }
 }
 family $family_name$ {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 31

 }
 then {
 three-color-policer $tcm_policer_name$;
 $other_actions$;
 }
 }
 }
 }
}
interfaces {
 $interface_name$ {
 unit $unit_id$ {
 family $family_name$ {
 filter {
 input $filter_name$;
 }
 }
 }
 }
}

Two Rate Three-Color Marking (trTCM)

Two-Rate Three-Color Marking uses a committed information rate
(CIR) and a peak information rate (PIR). As with srTCM, this
approach results in traffic being placed into one of three colors. In this
model, two rates are defined. Traffic within the CIR is Green, traffic
between the CIR and PIR is Yellow, and traffic above the PIR is Red.
A different packet loss priority (PLP) can be applied to each of the
three colors. Green is assigned to low PLP, yellow is medium-high
PLP, and red is high PLP.

Both srTCM and trTCM policers can operate in either color-aware or
color-blind mode.

In color-aware mode, the policer assumes that all packets have already
been metered and marked and takes into account the marking already
applied. It can rewrite the PLP to a higher value, but not to a lower
value.

In color-blind mode, the policer assumes that no previous metering or
marking has occurred and ignores any PLP markings. It sets the value
of the PLP based entirely on a local decision.

A configuration template for Two-Rate Three-Color Marking is as
follows:

	 32	 Day	One:	Deploying	Basic	QoS

firewall {
 three-color-policer $tcm_policer_name$ {
 two-rate {
 (color-aware|color-blind);
 committed-information-rate CIR;
 committed-burst-size CBS;
 peak-information-rate PIR;
 peak-burst-size PBS;
 }
 logical-interface-policer;
 action {
 loss-priority high then discard;
 }
 }
 family $family_name$ {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 three-color-policer $tcm_policer_name$;
 $other_actions$;
 }
 }
 }
 }
}
interfaces {
 $interface_name$ {
 unit $unit_id$ {
 family $family_name$ {
 filter {
 input $filter_name$;
 }
 }
 }
 }

}

Forwarding Table Policy

Forwarding table policy allows the manipulation of the forwarding-
class and loss-priority based on information in the forwarding table.
It is configured and applied with a similar syntax to a MF classifier.

The configuration of the classifier is achieved using a firewall filter
with the action setting the forwarding-class.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 33

The firewall filter is then applied as an input filter in the [edit for-
warding-options family $family$] hierarchy level like this:

firewall {
 family $family_name$ {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 forwarding-class $class_name$;
 $other_actions$;
 }
 }
 }
 }
}
forwarding-options {
 family $family_name$ {
 filter {
 input $filter_name$;
 }
 }
}
routing-instance $instance_name$ {
 forwarding-options {
 family $family_name$ {
 filter {
 input $fiter_name$;
 }
 }
 }
}

The filter allows a classification decision to be applied to all traffic
associated with a single routing instance, without having to apply the
input filter to all interfaces associated with that routing instance.

Egress Policers

Egress Policers rate limit traffic into the egress queues. They are
created by configuring a policer that defines the Peak Information Rate
(PIR) and the Committed Burst Size (CBS). The specified action is
applied to traffic that exceeds the PIR and CBS.

	 34	 Day	One:	Deploying	Basic	QoS

The policer is then used as an action in a firewall filter. Thus, it is
possible to apply a filter to a subset of traffic entering a queue by specify-
ing match conditions by which to identify the traffic, and then applying
the policer to that traffic only.

Finally, the firewall filter is applied to the relevant interface on the
output, like the following:

firewall {
 policer $policer_name$ {
 if-exceeding {
 bandwidth-limit $max_bandwidth$;
 burst-size-limit $bytes$;
 }
 then {
 discard;
 }
 }
 family $family_name$ {
 filter $filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 policer $policer_name$;
 $other_actions$;
 }
 }
 }
 }
}
interfaces {
 $interface_name$ {
 unit $unit_id$ {
 family $family_name$ {
 filter {
 output $filter_name$;
 }
 }
 }
 }
}

It is also possible to apply a policer to an entire logical interface. In this
case, the traffic entering all the queues on the interface is policed at the
specified rate, irrespective of the forwarding-class to which it belongs.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 35

Drop-profiles

RED (or more accurately Weighted RED) is implemented using
drop-profiles in Junos. Drop-profiles are used to define a series of
points on a graph that represent the proportion of matching traffic
that is dropped when the queue in which it is waiting reaches a
particular queue depth.

There are two basic approaches to creating a drop-profile. The first
approach is to manually define a series of points along the graph.
The graph will then be a step graph that rises up to the next drop-
probability when the matching fill-level is reached.

The template for the first configuration approach is shown below.

class-of-service {
 drop-profiles {
 $drop_profile_name$ {
 fill-level $fill_level_pc$ drop-probability $drop_pc$;
 }
 }
 scheduler $scheduler_name$ {
 drop-profile-map loss-priority $loss_priority$ protocol $protocol$ $drop_
profile_name$;
 }
}

TIP On the MX series routers, you can only configure protocol any
when applying a drop-profile-map. In general, it is possible to still
have a significant positive impact by applying RED to best effort and
any other forwarding-class in which the majority of traffic is likely
to be TCP-based. Avoid using any drop-profile-map on any sched-
uler applied to loss-intolerant classes composed primarily of UDP
traffic.

An example of the results of this type of approach is shown in the
graph of Figure 3.2. This example only requires two points to be
defined, but Junos permits up to 64 points to be defined.

	 36	 Day	One:	Deploying	Basic	QoS

drop-probability

fill-level

100

10050

50

25

80

Figure�3.2� Manually	Defined	Drop-profile	Graph

The graph Figure 3.2 would be implemented using the following
configuration excerpt:

class-of-service {
 drop-profile {
 my_example_drop_profile {
 fill-level 50 drop-probability 25;
 fill-level 80 drop-probability 50;
 }
 }
}

The second approach is to define between two and 64 points.

NOTE It is possible to define more than 64 points, but only 64 points will be
used to create the drop-profile.

Junos then interpolates between those points to create a “smooth”
curve based on 64 discrete points (0, 0) (f1, d1) (f2, d2) (fn, dn) and
(100, 100), the first and last points being included by default.

A template for the second approach to defining drop-profiles is given
here:

class-of-service {
 drop-profiles {
 $drop_profile_name$ {

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 37

 interpolate {
 fill-level [$fill_1$ $fill_2$... $fill_n$ 100];
 drop-probability [$drop_1$ $drop_2$... $drop_n$ 100];
 }
 }
 }
 schedulers {
 $scheduler_name$ {
 drop-profile-map loss-priority $loss_priority$ protocol $protocol$ $drop_
profile_name$;
 }
 }
}

drop-probability

fill-level

100

10050

50

25

80

Figure�3.3	 Interpolated	Drop-profile	Graph	

The graph in Figure 3.3 can be configured using the following configu-
ration excerpt:

class-of-service {
 drop-profiles {
 my_example_interpolate_profile {
 interpolate {
 fill-level [50 80];
 drop-probability [25 50];
 }
 }
 }
}

	 38	 Day	One:	Deploying	Basic	QoS

NOTE On the Enhanced Queuing DPCs on the MX series platform, it is only
possible to define two points: (f1, 0) and (f2, 100). Below the first point,
all matching traffic is transmitted, and above the second point, all
matching traffic is discarded, with a straight line drawn between the two
values as depicted in Figure 3.4.

drop-probability

fill-level

100

10050

50

25

80

Figure�3.4�Two-point	Defined	Drop-profile	Graph	

The graph in Figure 3.4 can be configured using the following configura-
tion excerpt:

class-of-service {
 drop-profiles {
 my_example_interpolate_eqdpc_profile {
 interpolate {
 fill-level [50 80];
 drop-probability [0 100];
 }
 }
 }
}

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 39

Scheduling and Shaping

Scheduling and shaping is possibly the most challenging aspect of QoS
to understand. However, it is not impossible if you take a step-by-step
approach.

In Junos, scheduling and shaping is configured using the three con-
structs: schedulers, scheduler-maps, and traffic-control-profiles.

These three elements are built, one upon the other, in order to create a
complete definition of the behavior to be applied at the egress inter-
face.

The most basic element is a scheduler, which is used to define the
behavior of traffic associated with a single egress queue.

Schedulers are then grouped into a complete set (a scheduler-map), one
for each class of traffic, which could possibly be seen on the interface
to which the scheduler-map will be (directly or indirectly) applied.

Finally, a traffic-control-profile can be constructed, which merges the
functions of the scheduler-map and a shaper. Uniquely, traffic-control-
profiles can be applied to various levels of the interface hierarchy: the
physical interface, the logical interface, or to an arbitrary group of
logical interfaces called an interface-set.

Schedulers

Schedulers are used to configure the behavior of, and the service
received by, an individual queue. At this point, the scheduler is an
abstract construct that bears no link to any particular forwarding
class, so it can be applied to multiple queues without requiring a
unique configuration if those queues all require the same behavior.

A scheduler simply defines the size of the buffers, the rate at which the
queue is serviced (defined either as a proportion of the total available
resource or as an absolute transmission rate), the priority applied to
the queue (in the context of the strict priority queuing approach) and
the drop-profile that should be associated with this queue. A configura-
tion example would be similar to the following:

class-of-service {
 schedulers {
 $scheduler_name$ {
 buffer-size [percent|temporal] $buffer_size$;
 transmit-rate [percent] $transmit_rate$ [rate-limit|exact];
 priority $scheduler_priority$;

	 40	 Day	One:	Deploying	Basic	QoS

 excess-priority $scheduler_priority_excess$;
 excess-rate [percent] $transmit_rate$;
 drop-profile-map loss-priority $loss_priority$ protocol any drop-profile
$drop_profile_name$;
 }
 }
}

Junos implements scheduling in a Priority Queueing – Deficit Weighted
Round Robin (PQ-DWRR) model. This makes use of two of the
attributes configured above to define the order in which queues are
scheduled.

Priority, has one of five values: strict-high, high, medium-high,
medium-low, and low. In reality, these are four values because strict-
high and high behave identically except that strict-high never goes “out
of contract.”

This is where we need to understand the second important attribute,
transmit-rate, which defines the “weight” of the queue. This declares
how much traffic will be considered “in contract.” Once that limit is
exceeded, traffic is considered “out of contract.”

Queues are scheduled in the following order based on these two
attributes.

1. All “in contract” high (and strict-high) priority queues are
serviced until they are either all empty or all “out of contract.”

2. All “in contract” medium-high priority queues are serviced until
they are either all empty or all “out of contract.”

3. All “in contract” medium-low priority queues are serviced until
they are either all empty or all “out of contract.”

4. All “in contract” low priority queues are serviced until they are
all empty or all “out of contract.”

5. All “out of contract” high priority queues are serviced until they
are empty.

6. All “out of contract” medium-high priority queues are serviced
until they are empty.

7. All “out of contract” medium-low priority queues are serviced
until they are empty.

8. All “out of contract” low priority queues are serviced until they
are empty.

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 41

NOTE At each stage, after every packet is transmitted, a check is made to
ensure that no higher priority packet is awaiting transmission. If such
a packet exists, then the scheduler returns to that queue to schedule it.
Thus, a high priority queue that is “in contract” will never have to wait
more than the time taken to transmit one maximum sized packet
before it can be scheduled again.

It is possible to modify the priorities and transmit-rates associated with
a queue when it goes out of contract by modifying the excess-priori-
ty and excess-transmit-rate.

NOTE It’s necessary to build a scheduler for each behavior that you use. This
can lead to a large number of schedulers, particularly on the edge
routers, if you have a large variety of interface types and speeds and a
large variety of service offerings. Careful definition of the service
offerings can dramatically reduce this number without substantively
changing the offering.

Scheduler-maps

Scheduler-maps are used to group together a complete set of schedulers
and apply them to each of the forwarding-classes that are present on
an interface. In creating the scheduler-map, you identify the amount
of service assigned to each forwarding-class and the relative priorities
of those forwarding-classes.

NOTE If you have created more than eight forwarding-classes and have
mapped multiple forwarding-classes to a single queue, it is absolutely
mandatory to have all forwarding-classes that map to a single queue
use the same scheduler. Traffic in a single forwarding-class can be
differentiated based upon the loss-priority by applying a unique
drop-profile to each of the loss-priorities in the scheduler.

NOTE It is strongly advised to ensure that every forwarding-class for which
any traffic may appear on an interface to which the scheduler-map is
applied has a corresponding scheduler. If no scheduler is identified for
a forwarding-class, and traffic arrives on that interface for that class, it
will receive no explicitly configured service (for example, no buffers,
no transmit-rate) and will therefore suffer very poor service unless the
interface is completely unused by other traffic.

	 42	 Day	One:	Deploying	Basic	QoS

A configuration template for a scheduler-map is as follows:

class-of-service {
 scheduler-maps {
 $scheduler_map_name$ {
 forwarding-class $class_name$ scheduler $scheduler_name$;
 }
 }
 interfaces {
 $interface_name$ {
 unit $unit_id$ {
 scheduler-map $scheduler_map_name$;
 }
 }
 }
}

Scheduler-maps are applied either directly to a logical interface (unit
$unit_id$), as in the template above, or, in the MX series routers,
using traffic-control-profiles (see the next section).

When applied directly to the interface, there can be no shaping
applied. Policing can, of course, be applied using a standard egress
firewall filter.

Traffic-control-profiles

Traffic-control-profiles permit the creation of hierarchical shapers
and schedulers. Traffic-control-profiles can be applied at each of the
four levels of shaping and scheduling and can be used to apply
shapers, schedulers, or both, such as the following:

class-of-service {
 traffic-control-profiles {
 tcp_name {
 scheduler-map $scheduler_map_name$;
 shaping-rate pir;
 guaranteed-rate cir;
 }
 $per_priority_tcp_name$ {
 shaping-rate-priority-high pir_high;
 shaping-rate-priority-medium pir_medium;
 shaping-rate-priority-low pir_low;
 }
 }
 interfaces {

	 Chapter		3:		Building	a	Basic	QoS	Implementation	using	Junos	Software	 43

 interface-set $interface_set_name$ {
 output-traffic-control-profile $per_priority_tcp_name$;
 }
 $interface_id$ {
 output-traffic-control-profile tcp_name;
 unit $unit_id$ {
 output-traffic-control-profile tcp_name;
 }
 }
 }
}

Rewrite Rules

In order to permit downstream nodes to perform classification based
on Behavior Aggregates, it is necessary to mark the packets on egress
(if they have not already been marked).

Marking can be performed on the same set of address families as can
classification (IEEE 802.1p, MPLS EXP bits, IP precedence or IP
DSCP, or the IPv6 DSCP).

The mechanism for applying a marking is very similar to the reverse of
classification. It should be noted, however, that all packets that have a
single forwarding-class and loss-priority pair must share the same
marking as shown here:

class-of-service {
 rewrite-rules {
 $marking_type$ $rewrite_rule_name$ {
 class $forwarding_class$ {
 loss-priority $loss_priority$ code-point $code_point$;
 }
 }
 }
 interfaces {
 $interface_name$ {
 unit $unit_id$ {
 rewrite-rules {
 $marking_type$ $rewrite_rule_name$;
 }
 }
 }
 }

}

	 44	 Day	One:	Deploying	Basic	QoS

Pulling it All Together

The sections in this chapter appeared in a certain order because that is
the order in which they are applied as the packet flows through the
network node. A better view of this order is illustrated in Figure 3.5.

interfaces

physical interface

logical interface

firewall-filter

policer

classifier

class-of-service

physical interface

logical interface

scheduler-map

scheduler

drop-profile

forwarding-options

forwarding-table

forwarding table filter

rewrite-ruletraffic-control-profile

Figure�3.5	 Putting	it	All	Together	Diagram

Chapter 4

Examples

Example of Core QoS Configuration . 46

Example of a Distribution/Provider Edge
Hierarchical QoS Configuration . 50

Example of Broadband Subscriber Dynamic QoS Configuration 56

Example of a High End Security Node QoS Configuration 59

What to Do Next & Where to Go . 64

	 46	 Day	One:	Deploying	Basic	QoS

You should now have a good understanding of the basic verbiage of
QoS and how to use the configuration constructs provided in Junos to
implement each of the QoS functions. With that as a background, this
final chapter provides a few broad examples of how to take the tools
presented earlier in the book and create QoS configurations for
particular situations.

It’s important to remember that as originally stated in Chapter 1, this
book is entitled Day One: Deploying Basic QoS, emphasing the basic
nomanclature. It does not aim to be a complete guide to implementing
QoS in every possible situation on every possible combination of
hardware sold by Juniper Networks since the M40 was released in
1998. The examples herewith are based on the T Series routing
platform for the core configuration, the MX Series for the edge and
BNG configuration, and the SRX for the security configuration.

Full and detailed configuration guides are available for up-to-date
capabilities of each plaform at http://www.juniper.net/techpubs/
software/junos.

TIP The identifiers in this chapter’s examples that are not part of Junos, but
represent tags that will be used to link different elements of the con-
figuration, are depicted in UPPER_CASE_WITH_UNDERSCORES. Any
keywords in Junos are always in lower-case-with-dashes. While it is
definitely not a requirement to differentiate variables from keywords in
this way, it should provide a very clear separation between the two.

Example of Core QoS Configuration

Here, it is assumed that all traffic passing through this router is MPLS
encapsulated and is marked already with a consistent value in the EXP
bits of the MPLS header. Note that while this is not entirely realistic,
since it is common for some traffic (management traffic, native multi-
cast, etc.) to remain as native IP, it would be necessary to add classifiers
and rewrite-rules, specifically for inet-precedence or dscp, in order to
apply a class-of-service to that traffic, which would simply add com-
plexity to the configuration example without adding any clarity to the
overall design.

It is also assumed that this is running on a router other than an MX
(for example, a T Series Router).

http://www.juniper.net/customers/support
http://www.juniper.net/customers/support

	 Chapter		4:		Examples	 47

class-of-service {
 forwarding-classes {
 class NC queue 7 priority high;
 class EF queue 5 priority high;
 class AF11 queue 4 priority medium-high;
 class AF13 queue 3 priority medium-high;
 class AF22 queue 2 priority medium-low;
 class AF42 queue 1 priority medium-low;
 class BE queue 0 priority low;
 class LBE queue 6 priority low;
 }
 classifiers {
 exp BA_CORE_EXP_CLASSIFIER {
 forwarding-class NC {
 loss-priority low code-points 111;
 }
 forwarding-class EF {
 loss-priority low code-points 101;
 }
 forwarding-class AF11 {
 loss-priority low code-points 100;
 }
 forwarding-class AF13 {
 loss-piority high code-points 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-points 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-points 110;
 }
 forwarding-class BE {
 loss-priority high code-points 000;
 }
 forwarding-class LBE {
 loss-priority high code-points 001;
 }
 }
 }
 schedulers {
 HIGH_5PC_5PC_SCHEDULER {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority high;
 }
 HIGH_50PC_RL_20MS_SCHEDULER {
 transmit-rate percent 50 rate-limit;
 buffer-size temporal 20000;
 priority high;
 }
 MEDIUM_HIGH_10PC_20PC_SCHEDULER {

	 48	 Day	One:	Deploying	Basic	QoS

 transmit-rate percent 10;
 buffer-size percent 20;
 priority medium-high;
 }
 MEDIUM_HIGH_10PC_10PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority medium-high;
 drop-profile-map loss-priority high protocol any drop-profile AGGRESSIVE;
 }
 MEDIUM_LOW_10PC_10PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority medium-low;
 drop-profile-map loss-priority high protocol any drop-profile MODERATE;
 }
 LOW_5PC_20PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 20;
 priority low;
 drop-profile-map loss-priority high protocol any drop-profile AGGRESSIVE;
 }
 LOW_REM_REM_SCHEDULER {
 transmit-rate remainder;
 buffer-size remainder;
 priority low;
 drop-profile-map loss-priority any protocol any drop-profile AGGRESSIVE;
 }
 }
 scheduler-maps {
 CORE_UPLINK_SCHED_MAP {
 class NC scheduler HIGH_5PC_5PC_SCHEDULER;
 class EF scheduler HIGH_50PC_RL_20MS_SCHEDULER;
 class AF11 scheduler MEDIUM_HIGH_10PC_20PC_SCHEDULER;
 class AF13 scheduler MEDIUM_HIGH_10PC_10PC_SCHEDULER;
 class AF22 scheduler MEDIUM_LOW_10PC_10PC_SCHEDULER;
 class AF42 scheduler MEDIUM_LOW_10PC_10PC_SCHEDULER;
 class BE scheduler LOW_10PC_10PC_SCHEDULER;
 class LBE scheduler LOW_REM_REM_SCHEDULER;
 }
 }
 drop-profiles {
 AGGRESSIVE {
 interpolate {
 fill-level [25 60 80];
 drop-probability [40 80 90];
 }
 }

	 Chapter		4:		Examples	 49

 MODERATE {
 interpolate {
 fill-level [50 75 95];
 drop-probability [10 25 40];
 }
 }
 }
 rewrite-rules {
 exp CORE_EXP_REWRITE {
 forwarding-class NC {
 loss-priority low code-point 111;
 }
 forwarding-class EF {
 loss-priority low code-point 101;
 }
 forwarding-class AF11 {
 loss-priority low code-point 100;
 }
 forwarding-class AF13 {
 loss-priority high code-point 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-point 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-point 110;
 }
 forwarding-class BE {
 loss-priority high code-point 000;
 }
 forwarding-class LBE {
 loss-priority high code-point 001;
 }
 }
 }
 interfaces xe-0/0/0 {
 unit 0 {
 scheduler-map CORE_UPLINK_SCHED_MAP;
 classifiers {
 exp BA_CORE_EXP_CLASSIFIER;
 }
 rewrite-rules {
 exp CORE_EXP_REWRITE;
 }
 }
 }
}

	 50	 Day	One:	Deploying	Basic	QoS

Example of a Distribution/Provider Edge Hierarchical QoS
Configuration

Here, at the edge of the network, QoS configuration is often complex,
accounting for particular services and combinations of services, in
addition to the configurations similar to those required for the core on
the uplinks.

This is where hierarchical QoS is usually applied in interfaces over
which multiple subscribers, grouped into multiple subsets, are at-
tached.

firewall {
 three-color-policer 2M_VOICE_SERVICE_POLICER {
 two-rate {
 color-aware;
 committed-information-rate 2m;
 committed-burst-size 5k;
 peak-information-rate 2500k;
 peak-burst-size 5k;
 }
 action {
 loss-priority high then discard;
 }
 }
 family inet {
 filter UNTRUSTED_SUBSCRIBER_BLEACH_CLASSIFIER {
 term BLEACH_DSCP {
 then {
 forwarding-class BE;
 next term;
 }
 }
 }
 filter UNTRUSTED_SUBSCRIBER_MF_CLASSIFIER {
 term VOICE_TRAFFIC_IN {
 from {
 $match_criteria_for_voice_service$;
 }
 then {
 forwarding-class EF;
 three-color-policer 2M_VOICE_SERVICE_POLICER;
 accept;
 }
 }
 term RECLASSIFY_OUT_OF_CONTRACT_VOICE {
 from {
 $match_criteria_for_voice_service$;
 loss-priority high;

	 Chapter		4:		Examples	 51

 }
 then {
 forwarding-class BE;
 }
 }
 term EVERYTHING_ELSE_IN {
 then {
 forwarding-class BE;
 accept;
 }
 }
 }
 }
}
interfaces {
 xe-7/0/0 {
 description “Shared Subscriber 10GE – Static Config”;
 unit 1000 {
 family inet {
 filter {
 input {
 UNTRUSTED_SUBSCRIBER_MF_CLASSIFIER;
 }
 }
 }
 }
 unit 2000 {
 family inet {
 filter {
 input {
 UNTRUSTED_SUBSCRIBER_BLEACH_CLASSIFIER;
 }
 }
 }
 }
 }
}
class-of-service {
 forwarding-classes {
 class NC queue 7 priority high;
 class EF queue 5 priority high;
 class AF11 queue 4 priority medium-high;
 class AF13 queue 3 priority medium-high;
 class AF22 queue 2 priority medium-low;
 class AF42 queue 1 priority medium-low;
 class BE queue 0 priority low;
 class LBE queue 6 priority low;
 }
 classifiers {
 exp BA_CORE_EXP_CLASSIFIER {
 forwarding-class NC {

	 52	 Day	One:	Deploying	Basic	QoS

 loss-priority low code-points 111;
 }
 forwarding-class EF {
 loss-priority low code-points 101;
 }
 forwarding-class AF11 {
 loss-priority low code-points 100;
 }
 forwarding-class AF13 {
 loss-piority high code-points 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-points 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-points 110;
 }
 forwarding-class BE {
 loss-priority high code-points 000;
 }
 forwarding-class LBE {
 loss-priority high code-points 001;
 }
 }
 dscp BA_TRUSTED_SUB_DSCP_CLASSIFIER {
 forwarding-class EF {
 loss-priority low code-points 101;
 }
 forwarding-class AF11 {
 loss-priority low code-points 100;
 }
 forwarding-class AF13 {
 loss-piority high code-points 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-points 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-points 110;
 }
 forwarding-class BE {
 loss-priority high code-points 000;
 }
 }
 ieee-dot1p BA_TRUSTED_DSLAM_DOT1P_CLASSIFIER {
 forwarding-class NC {
 loss-priority low code-points 111;
 }
 forwarding-class EF {
 loss-priority low code-points 101;

	 Chapter		4:		Examples	 53

 }
 forwarding-class AF11 {
 loss-priority low code-points 100;
 }
 forwarding-class AF13 {
 loss-piority high code-points 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-points 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-points 110;
 }
 forwarding-class BE {
 loss-priority high code-points 000;
 }
 }
 }
 schedulers {
 HIGH_5PC_5PC_SCHEDULER {
 transmit-rate percent 5;
 buffer-size percent 5;
 priority high;
 }
 HIGH_50PC_RL_20MS_SCHEDULER {
 transmit-rate percent 50 rate-limit;
 buffer-size temporal 20000;
 priority high;
 }
 MEDIUM_HIGH_10PC_20PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 20;
 priority medium-high;
 }
 MEDIUM_HIGH_10PC_10PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority medium-high;
 drop-profile-map loss-priority high protocol any drop-profile AGGRESSIVE;
 }
 MEDIUM_LOW_10PC_10PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority medium-low;
 drop-profile-map loss-priority high protocol any drop-profile MODERATE;
 }
 LOW_5PC_20PC_SCHEDULER {
 transmit-rate percent 10;
 buffer-size percent 20;
 priority low;

	 54	 Day	One:	Deploying	Basic	QoS

 drop-profile-map loss-priority high protocol any drop-profile AGGRESSIVE;
 }
 LOW_REM_REM_SCHEDULER {
 transmit-rate remainder;
 buffer-size remainder;
 priority low;
 drop-profile-map loss-priority any protocol any drop-profile AGGRESSIVE;
 }
 }
 scheduler-maps {
 CORE_UPLINK_SCHED_MAP {
 class NC scheduler HIGH_5PC_5PC_SCHEDULER;
 class EF scheduler HIGH_50PC_RL_20MS_SCHEDULER;
 class AF11 scheduler MEDIUM_HIGH_10PC_20PC_SCHEDULER;
 class AF13 scheduler MEDIUM_HIGH_10PC_10PC_SCHEDULER;
 class AF22 scheduler MEDIUM_LOW_10PC_10PC_SCHEDULER;
 class AF42 scheduler MEDIUM_LOW_10PC_10PC_SCHEDULER;
 class BE scheduler LOW_10PC_10PC_SCHEDULER;
 class LBE scheduler LOW_REM_REM_SCHEDULER;
 }
 }
 drop-profiles {
 AGGRESSIVE {
 interpolate {
 fill-level [25 60 80];
 drop-probability [40 80 90];
 }
 }
 MODERATE {
 interpolate {
 fill-level [50 75 95];
 drop-probability [10 25 40];
 }
 }
 }
 rewrite-rules {
 exp CORE_EXP_REWRITE {
 forwarding-class NC {
 loss-priority low code-point 111;
 }
 forwarding-class EF {
 loss-priority low code-point 101;
 }
 forwarding-class AF11 {
 loss-priority low code-point 100;
 }
 forwarding-class AF13 {
 loss-priority high code-point 011;
 }
 forwarding-class AF22 {
 loss-priority medium code-point 010;

	 Chapter		4:		Examples	 55

 }
 forwarding-class AF42 {
 loss-priority medium code-point 110;
 }
 forwarding-class BE {
 loss-priority high code-point 000;
 }
 forwarding-class LBE {
 loss-priority high code-point 001;
 }
 }
 dscp SUBSCRIBER_DSCP_REWRITE {
 forwarding-class NC {
 loss-priority low code-point cs7;
 }
 forwarding-class EF {
 loss-priority low code-point ef;
 }
 forwarding-class AF11 {
 loss-priority low code-point af11;
 }
 forwarding-class AF13 {
 loss-priority high code-point af13;
 }
 forwarding-class AF22 {
 loss-priority medium code-point af22;
 }
 forwarding-class AF42 {
 loss-priority medium code-point af42;
 }
 forwarding-class BE {
 loss-priority high code-point be;
 }
 forwarding-class LBE {
 loss-priority high code-point 001000;
 }
 }
 ieee-dot1p MSAN_DOT1P_REWRITE {
 forwarding-class NC {
 loss-priority low code-point 111;
 }
 forwarding-class EF {
 loss-priority low code-point 101;
 }
 forwarding-class AF11 {
 loss-priority low code-point 100;
 }
 forwarding-class AF13 {
 loss-priority high code-point 011;
 }
 forwarding-class AF22 {

	 56	 Day	One:	Deploying	Basic	QoS

 loss-priority medium code-point 010;
 }
 forwarding-class AF42 {
 loss-priority medium code-point 110;
 }
 forwarding-class BE {
 loss-priority high code-point 000;
 }
 forwarding-class LBE {
 loss-priority high code-point 001;
 }
 }
 }
 interfaces {
 xe-0/0/0 {
 unit 0 {
 scheduler-map CORE_UPLINK_SCHED_MAP;
 classifiers {
 exp BA_CORE_EXP_CLASSIFIER;
 }
 rewrite-rules {
 exp CORE_EXP_REWRITE;
 }
 }
 }
 xe-7/0/0 {
 unit * {
 rewrite-rules {
 dscp SUBSCRIBER_DSCP_REWRITE;
 ieee-dot1p MSAN_DOT1P_REWRITE;
 }
 }
 }
 }

}

Example of Broadband Subscriber Dynamic QoS Configuration

Here, broadband subscriber systems introduce another twist to the
challenge of configuring QoS. The subscriber interfaces are dynamic in
nature. They only exist when the subscriber is connected and a single
logical interface (unit) identifier may be reused for many different
subscribers over the lifetime of a Broadband Network Gateway (BNG).

This means that QoS attributes must be dynamically assigned to a
subscriber at the time they are connected (and may need to be changed
during the lifetime of a single connection). In addition, while it may be
possible to define QoS templates, which contain all the values for a
particular subset of subscribers, it may also be desirable to define

	 Chapter		4:		Examples	 57

templates such that attributes are also passed down from the RADIUS
server to the BNG when the user is being authenticated and autho-
rized.

This parameterization of the QoS attributes provides a highly flexible
mechanism for individual QoS configurations for each subscriber.

NOTE While it is possible to have completely unique QoS configurations per
subscriber, it is not recommended. Such an approach would introduce
incredible complexity to the system, making the design very difficult to
understand and troubleshoot. Instead, it’s recommended that a
relatively small number of combinations representing each of the
service offerings be created, and that those combinations be applied to
all subscribers.

firewall {
 family inet {
 filter $input_filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 forwarding-class $class_name$;
 $other_actions$;
 accept;
 }
 }
 }
 filter $output_filter_name$ {
 term $term_name$ {
 from {
 $match_conditions$;
 }
 then {
 forwarding-class $class_name$;
 $other_actions$;
 accept;
 }
 }
 }
 }
}
dynamic-profiles {
 $dynamic_profile_name$ {
 predefined-variable-defaults {
 $variable$ $attributes_and_values$;
 }
 interfaces {

	 58	 Day	One:	Deploying	Basic	QoS

 interface-set “$junos-interface-set-name” {
 interface demux0 {
 unit “$junos-interface-unit”;
 }
 }
 demux0 {
 unit “$junos-interface-unit” {
 demux-options {
 underlying-interface “$junos-underlying-interface”;
 }
 family inet {
 demux-source {
 $junos-subscriber-ip-address;
 }
 filter {
 input “$junos-input-filter”;
 output “$junos-output-filter”;
 }
 unnumbered-address lo0.0 preferred-source-address $preferred_
address$;
 }
 }
 }
 }
 class-of-service {
 traffic-control-profiles {
 $tcp_template_name$ {
 scheduler-map “$junos-cos-scheduler-map”;
 shaping-rate “$junos-cos-shaping-rate”;
 }
 }
 interfaces {
 demux0 {
 unit “$junos-interface-unit” {
 output-traffic-control-profile $tcp_template_name$;
 rewrite {
 ieee-802.1 $rewrite_rule_name$;
 }
 }
 }
 }
 }
 scheduler-maps {
 $scheduler_map_template_name$ {
 forwarding-class $class_name$ scheduler $scheduler_name$;
 }
 }
 schedulers {
 $scheduler_name$ {
 transmit-rate “$junos-cos-scheduler-tx” exact;
 buffer-size temporal “$junos-cos-scheduler-bs”;

	 Chapter		4:		Examples	 59

 priority $scheduler_priority$;
 }
 }
 }
}

To make this “template” configuration work, it is necessary to return
Juniper Networks Vendor Specific Attributes in a RADIUS Access-
Accept. An example configuration for a RADIUS server would be as
below:

Per User RADIUS VSAs required **example**

Jnpr-CoS-Parameter-Type T01 BB_SUB_COS
Jnpr-CoS-Parameter-Type T02 20m
Jnpr-CoS-Scheduler-Pmt-Type EF T01 2m
Jnpr-CoS-Scheduler-Pmt-Type EF T02 100
Jnpr-CoS-Scheduler-Pmt-Type AF11 T01 10m
Jnpr-CoS-Scheduler-Pmt-Type AF11 T02 15
Jnpr-CoS-Scheduler-Pmt-Type AF42 T01 7m
Jnpr-CoS-Scheduler-Pmt-Type AF42 T02 35
Jnpr-CoS-Scheduler-Pmt-Type BE T01 1m
Jnpr-CoS-Scheduler-Pmt-Type BE T02 40
Unisphere-Egress-Policy-Name subscriber_output_policy
Unishpere-Ingress-Policy-Name subscriber_input_policy
Unishpere-Qos-Set-Name demux-set

Example of a High End Security Node QoS Configuration

Here, high-end security devices from the SRX Series of Services
Gateways follow a very similar model for QoS configuration to all
other Junos devices. There are some items that need to be taken into
account in these devices that don’t normally occur in non-security
oriented devices.

At the ingress to, and egress from, an IPsec VPN tunnel, the DSCP bits
are copied by default from the original (tunneled) packet onto the ESP
header’s DSCP. Therefore, no rewrite-rule is required if the operator
wants a transparent operation. If a different marking is required, then
a regular rewrite-rule can be applied.

However, after encapsulation/decapsulation, the packets are not
placed into the correct forwarding-class (see the following NOTE).
Therefore, a MF classifier on egress is required to place the packets
back into the correct forwarding-class so they are given the correct
behavior.

	 60	 Day	One:	Deploying	Basic	QoS

NOTE At the time of this writing, the SPCs are not QoS aware. Therefore, if
the SPC becomes oversubscribed, it drops packets in a way that doesn’t
conform to the class-of-service configuration.

firewall {
 filter $filter_name$ {
 term SEND_TO_EF {
 from {
 dscp ef;
 }
 then {
 log;
 forwarding-class EF;
 accept;
 }
 }
 term SEND_TO_AF11 {
 from {
 dscp cs2;
 }
 then {
 forwarding-class AF11;
 accept;
 }
 }
 term SEND_TO_AF41 {
 from {
 dscp [cs3 cs6];
 }
 then {
 forwarding-class AF41;
 accept;
 }
 }
 term DEFAULT_PERMIT {
 then accept;
 }
 }
}
class-of-service {
 forwarding-classes {
 queue 2 AF11;
 queue 3 AF41;
 queue 1 EF;
 queue 0 BE;
 }
 interfaces {
 reth0 {
 scheduler-map $scheduler_map_name$;
 unit * {

	 Chapter		4:		Examples	 61

 rewrite-rules {
 dscp $rewrite_rule_name$;
 }
 }
 }
 }
 scheduler-maps {
 $scheduler_map_name$ {
 forwarding-class EF scheduler HIGH_50PC_RL_10MS_SCHEDULER;
 forwarding-class AF11 scheduler MEDIUM_HIGH_20PC_20PC_SCHEDULER;
 forwarding-class AF41 scheduler MEDIUM_LOW_20PC_40PC_SCHEDULER;
 forwarding-class BE scheduler LOW_REM_REM_SCHEDULER;
 }
 }
 schedulers {
 HIGH_50PC_RL_10MS_SCHEDULER {
 transmit-rate percent 50 rate-limit;
 buffer-size temporal 10000;
 priority high;
 }
 MEDIUM_HIGH_20PC_20PC_SCHEDULER {
 transmit-rate percent 20;
 buffer-size percent 20;
 priority medium-high;
 drop-profile-map loss-priority high protocol any drop-profile MODERATE;
 }
 MEDIUM_LOW_20PC_40PC_SCHEDULER {
 transmit-rate percent 20;
 buffer-size percent 40;
 priority medium-low;
 }
 LOW_REM_REM_SCHEDULER {
 transmit-rate remainder;
 buffer-size remainder;
 priority low;
 drop-profile-map loss-priority any protocol any drop-profile AGGRESSIVE;
 }
 }
 rewrite-rules {
 dscp $rewrite_rule_name$ {
 forwarding-class EF {
 loss-priority low code-point ef;
 }
 forwarding-class AF11 {
 loss-priority low code-point cs2;
 }
 forwarding-class AF41 {
 loss-priority low code-point cs6;
 loss-priority high code-point cs3;
 }
 forwarding-class BE {

	 62	 Day	One:	Deploying	Basic	QoS

 loss-priority high code-point be;
 }
 }
 }
}
interfaces {
 reth0 {
 vlan-tagging;
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 10 {
 description “trust”;
 vlan-id 10;
 family inet {
 filter {
 output $filter_name$;
 }
 address $ip_address$/$prefix_length$;
 }
 }
 unit 20 {
 description “untrust”;
 vlan-id 20;
 family inet {
 filter {
 output $filter_name$;
 }
 address $ip_address$/$prefix_length$;
 }
 }
 }
}

	 	 63

	 64	

What to Do Next & Where to Go

http://www .juniper .net/dayone

The Day One book series is available for free download in PDF
format. Select titles also feature a Copy and Paste edition for direct
placement of Junos configurations. (The library is available in eBook
format for iPads and iPhones from the Apple iBookstore, or download
to Kindles, Androids, Blackberrys, Macs and PCs by visiting the Kindle
Store. In addition, print copies are available for sale at Amazon or
www.vervante.com.)

http://www .juniper .net/books

QoS Enabled Networks: Tools and Foundations, by Peter Lundqvist
and Miguel Barreiros. This book, by two experts from Juniper Net-
works, provides an in-depth treatment of the subject from a more
theoretical level all the way through to an understanding of the tools
available to influence the behaviors, and finally through to the applica-
tion of those tools.

http://forums .juniper .net/jnet

The Juniper-sponsored J-Net Communities forum is dedicated to
sharing information, best practices, and questions about Juniper
products, technologies, and solutions. Register to participate in this
free forum.

www .juniper .net/techpubs/

Juniper Networks technical documentation includes everything you
need to understand and configure all aspects of Junos, including
MPLS. The documentation set is both comprehensive and thoroughly
reviewed by Juniper engineering.

www .juniper .net/training/fasttrack

Take courses online, on location, or at one of the partner training
centers around the world. The Juniper Network Technical Certifica-
tion Program (JNTCP) allows you to earn certifications by demon-
strating competence in configuration and troubleshooting of Juniper
products. If you want the fast track to earning your certifications in
enterprise routing, switching, or security use the available online
courses, student guides, and lab guides.

	Front Cover
	Back Cover
	Table of Contents
	Copyright & About the Author
	What You Need to Know Before Reading This Book
	After Reading This Book, You’ll be Able To
	Why QoS

	Chapter 1: Introducing QoS
	Quality of Service versus Class of Service
	What are Behaviors?
	Loss
	Latency
	Jitter
	Summary

	Chapter 2: Basic Junos QoS Concepts and PacketFlow Through Routing Nodes
	The Building Blocks of a Junos CoS Configuration
	Packet Flow Through the CoS Functions
	Packet Flow Through Hardware
	Summary

	Chapter 3: Building a Basic QoS ImplementationUsing Junos Software
	Code Points
	Choosing a Classification Approach
	Ingress Policers
	Forwarding Table Policy
	Egress Policers
	Drop-profiles
	Scheduling and Shaping
	Rewrite Rules
	Pulling it All Together

	Chapter 4: Examples
	Example of Core QoS Configuration
	Example of a Distribution/Provider Edge Hierarchical QoS Configuration
	Example of Broadband Subscriber Dynamic QoS Configuration
	Example of a High End Security Node QoS Configuration

	What to Do Next & Where to Go

