

PM40X/PM50X maintenance manual

Contents

1. Product Specification	1
2. module instruction	4
3. components test of PM40/PM50 module	11
4. UPS Event List	14

1 Product Specification

1.1 Mechanical Characteristic

Table 1-1Mechanical Characteristics for Cabinet

84 a da l	l lmia	2-slot	4-slot	6-slot	10-slot
Model	Unit	Cabinet	Cabinet	Cabinet	Cabinet
Mechanical Dimension (W*D*H)	mm	600*980*1150	650*960*1600	650*970*2000	1300*1100*2000
Weight	kg	120	170	220	450
color	N/A	Black			
Protection Level, (IEC60529)	N/A	IP20			

Table 1-2Mechanical Characteristics for power module

Model	Unit	40kVA power module	50kVA power module
Mechanical Dimension (W*D*H)	mm	510*700*178	510*700*178
Weight	kg	44	45

1.2 Electrical Characteristics

Electrical Characteristics (Input Rectifier)

Table 1-3Rectifier AC input (Mains)

Item	Unit	Parameter
Grid System	\	3 Phases + Neutral + Ground
Rated AC Input Voltage	Vac	380/400/415(three-phase and sharing neutral with the bypass input)
Rated Frequency	Vac	50/60Hz
Input voltage range	Vac	304~478Vac (Line-Line),full load 228V~304Vac (Line-Line),load decrease linearly according to the min phase voltage
Input Frequency range	Hz	40~70
Input Power factor	PF	>0.99
THDI	THDI%	<3% (full Linear Load)

Electrical Characteristics(Intermediate DC Link)

Table 1-4Battery

Items Unit		Parameters
Battery bus voltage Vdc		Rated: ±240V
Quantity of lead-acid cells	Nominal	40=[1 battery(12V)] ,240=[1 battery(2V)]

Floor shares valtage	V/cell	2.25V/cell(selectable from 2.2V/cell~2.35V/cell)	
Float charge voltage	(VRLA)	Constant current and constant voltage charge mode	
Temperature	mV/℃/cl	3.0(selectable:0~5.0)	
compensation	IIIV/ C/CI	5.0(selectable.0 5.0)	
Ripple voltage	%	≤1	
Ripple current	%	≤5	
Equalized	VRLA	2.4V/cell(selectable from : 2.30V/cell~2.45V/cell)	
charge voltage	VNLA	Constant current and constant voltage charge mode	
		1.65V/cell(selectablefrom: 1.60V/cell~1.750V/cell)	
		@0.6C discharge current	
Final	V/cell	1.75V/cell (selectable from: 1.65V/cell~1.8V/cell)	
discharging voltage	(VRLA)	@0.15C discharge current	
		(EOD voltage changes linearly within the set range	
		according to discharge current)	
Datton, Chargo	V/cell	2.4V/cell(selectable from : 2.3V/cell~2.45V/cell)	
Battery Charge V/cell		Constant current and constant voltage charge mode	
Battery Charging	kW	10%* UPS capacity (selectable from : 1~20%* UPS	
Power Max Current	KVV	capacity)	

Electrical Characteristics(Inverter Output)

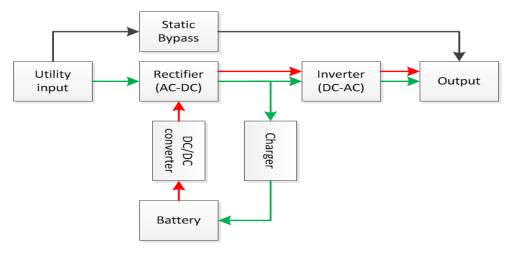
Table 1-5 Inverter Output (To critical load)

Item	Unit	Value
Rated capacity	KVA	40-500kVA
Rated AC voltage	Vac	380/400/415 (Line-Line)
Rated Frequency	Hz	50/60
Frequency Regulation	Hz	50/60Hz±0.1%
Voltage precision	%	\pm 1.5(0~100% linear load)
	\	110%, 60min;
Overload		125%,10min;
Overioad		150%,1min;
		>150%,200ms
Synchronized Range	Hz	Settable, \pm 0.5Hz $^{\sim}\pm$ 5Hz, default \pm 3Hz
Synchronized Slew	Hz	Settable, 0.5Hz/S ~ 3Hz/S, default 0.5Hz/S
Rate	112	3112/3, deladit 0.3112/3
Output Power Factor	PF	0.9
Transient Response	%	<5% for step load (20% - 80% -20%)
Transient recovery		< 30ms for step load (0% - 100% -0%)
Output Voltage		<1% from 0% to 100% linear load
THDu		<6% full non-linear load according to IEC/EN62040-3

Table 1-6Bypass Mains Input

Item	Unit	2-slot Cabinet and 4-slot Cabinet	6-slot Cabinet and 10-slot	
item	Onit	2-SIOU CADITIEU ATIO 4-SIOU CADITIEU	Cabinet	
Rated AC	Vac	380/400/415		
voltage	Vac	(three-phase four-wire and sharing	neutral with the bypass)	
Rated	Α	91~758(Table3-2)		
Current	,	31 700(1db100 2)		
		125%, Long term operation	110%, Long term operation	
Overload	%	125%~130%, for 10 min	110%~125%,for 5 min	
Overload	/0	130%~150%, for 1min	125%~150%, for 1 min	
		>150%,300ms	>150%,1S	
Current				
rating of	Α	1.7×ln		
neutral cable				
Rated	Hz	50	(60	
frequency	П	50/60		
Switch time				
(between	ms	Synchronized transfer: Ome		
bypass and	1113	Synchronized transfer: 0ms		
inverter)				
Bypass		Settable, default -20%~+15%		
voltage range	%	Up limited: +10%, +15%, +20%, +25%		
voitage range		Down limited: -10%, -15%, -20%, -30%, -40%		
Bypass				
frequency	Hz	Settable, ± 1 Hz, ± 3 Hz, ± 5 Hz		
range				
Synchronized Range	Hz	Settable ±0.5Hz~±5Hz,default ±3Hz		

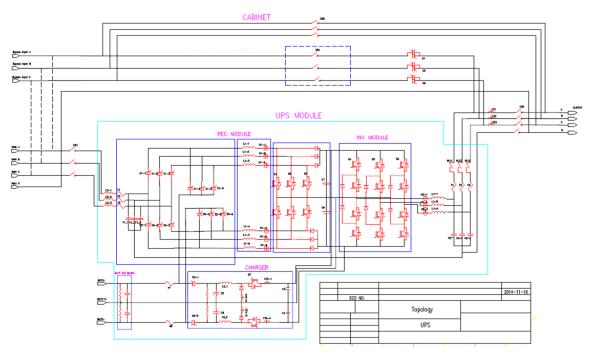
1.3 Efficiency


Table 1-7Efficiency

Item	Unit	Value	
	Over	all efficiency	
Normal mode(dual	%	>96	
conversion)	%	>90	
ECO mode	%	>99	
Battery discharging efficiency (battery at nominal voltage 480Vdc and full-rated linear load)			
Battery mode	%	>96	

2 module instruction

2.1 PM40/PM50 module instruction



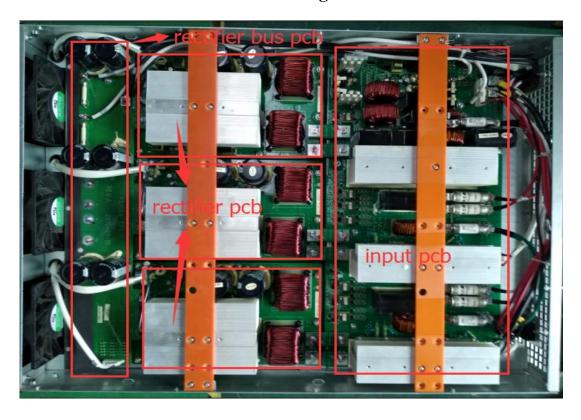
System Diagram

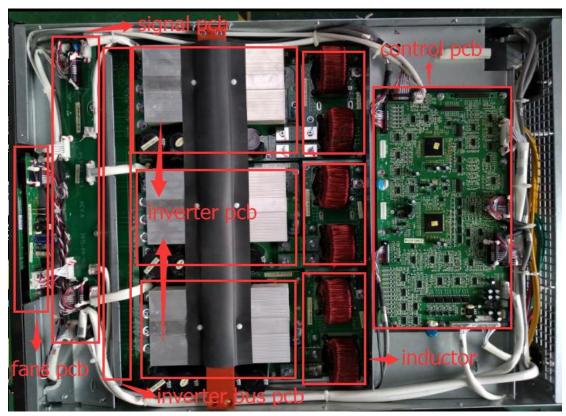
In AC mode (as is shown in green line), the utility power enters the rectifier through EMI and is boosted to DC bus voltage 360VDC by the PFC. The inverter inverses the DC bus voltage to AC 220VAC (Adjustable). Meanwhile the charger is charging the battery from DC bus.

In Battery mode (as is shown in red line), the battery DC voltage is boosted to DC bus voltage $\pm 360 \text{VDC}$ by the PFC The inverter inverses the DC bus voltage to AC 220VAC (Adjustable)

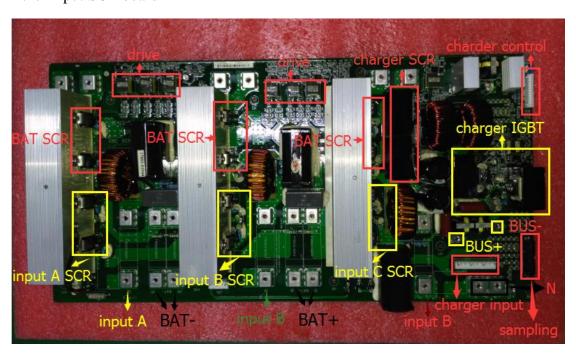
In Bypass mode (as is shown in black line), the load is powered by the utility through static bypass.

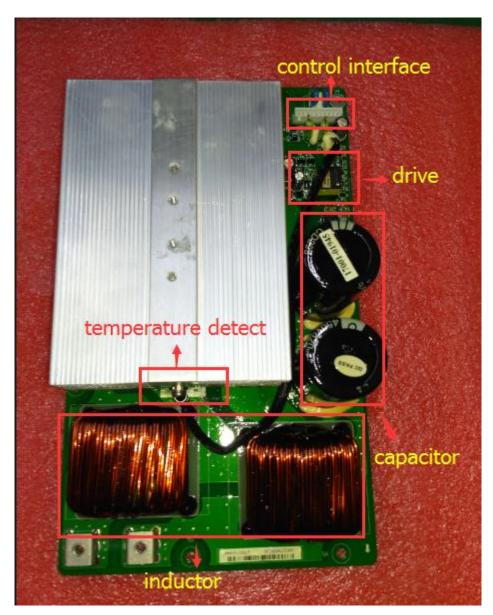
PM40/PM50 Topological graph


2.2 PM40X/PM50X Outlook



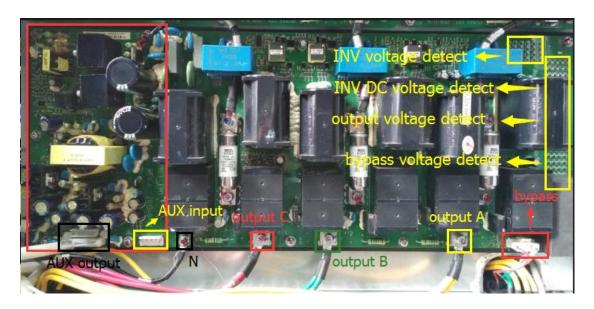
PM40X/PM50Xfront and back appearance

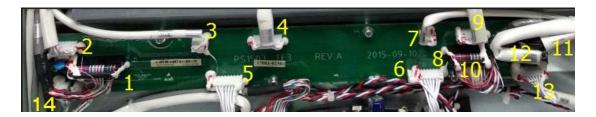

2.3 PM40/PM50 internal structure diagram


2.4 Main board and introduction of DTX33 20-30KVA

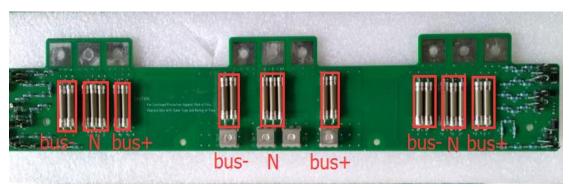
(1) input SCR board

(2) rectifier board (PFC)




(3) inverter board

(4) output board


(5) signal board

- 1. drive for inverter
- 3. drive for AUX
- 5. drive for rectifier A
- 7. drive for AUX
- 10.drive for rectifier
- 12. power from control board
- 14.bus detect

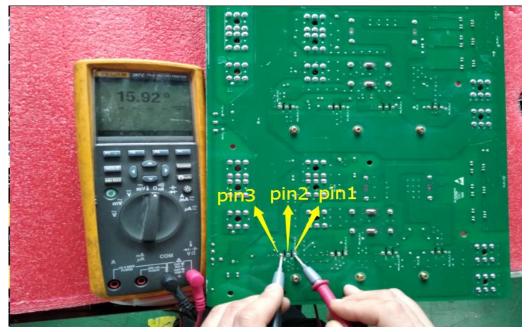
- 2.drive for inverter A
- 4. drive for inverter B
- 6. drive for rectifier B
- 9. drive for inverter C
- 11. can communicate
- 13.drive for rectifier A

(6) inverter bus board and rectifier bus board

(7) Monitor board

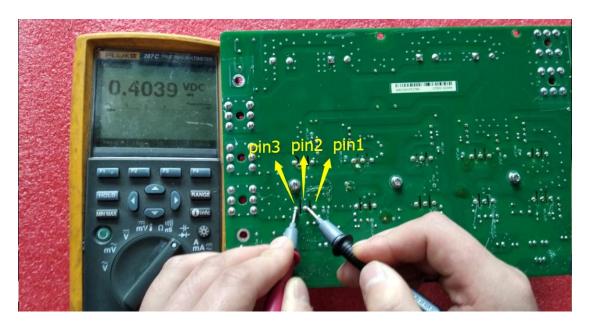


- 1.Control charge board
- 2.Outlet temp detect
- 3.SCR drive + bat voltage detect + current detect + relay control
- 4.INV voltage detect + current detect + relay control
- 5. Identify module ID, short 7,8 pin test service
- 6.Temp control
- 7.Bypass detect + output voltage detect
- 8.+15V and -15V power
- 9. Power supply from auxiliary power board
- 10.CAN communication
- 11. Temp detect (on heat sink)
- 12.24V and 3.3V power source
- 13.LED display + power for fans +fans detect
- 14.PFC drive + bus detect
- 15.PFC TXD & RXD
- 16.INV TXD & RXD
- 17.INV drive +15V source
- 18.Inlet temp detect

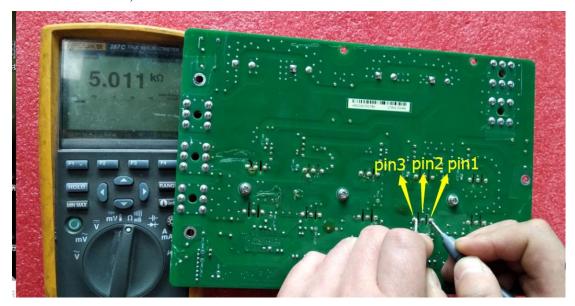


3. components test of PM40/PM50 module

3.1 Detection of rectifier SCR



Switch the multimeter to resistance Chanel and test the the rectifier IGBT, the normal value is open between pin2 and pin3.



Switch the multimeter to resistance Chanel and test the voltage drop of the rectifier IGBT, the normal value should be $15\text{--}17\Omega$

3.2 Detection of rectifier IGBT and inverter IGBT

Switch the multimeter to Diode Chanel and test the voltage drop of the rectifier IGBT and inverter IGBT, the normal value should be $0.35V \sim 0.45V$.

Switch the multimeter to resistance Chanel and test the rectifier IGBT and inverter IGBT, the normal value should be about $3K\Omega$ or $5K\Omega$.

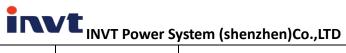
3.3 Main fault and trouble shooting

Common faults	Solution and Maintenance
Input Grid Neutral Lost	Put on the output breaker, and turn on the ups
	again.
Utility Abnormal	Check the whether the input power is normal,

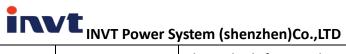
· · ·	1
	then check whether the input fuses are work
	well. If the fuses are broken, replace the input
	board.
RectifierSoft Start Fail	Replace the input board.
Rectifier Fail	Replace the rectifier board.
Inverter Protect	Replace the inverter board and bus fuses board
Inverter Fail	Replace the inverter board
INV IGBT Driver Block	Replace the inverter board and bus fuses board
Output short and output overload	Check the loads firstly, if the loads have no
	problem, replace the output board
Relays connection lost	Replace the output board.
Fans fail	Replace the fans

4.UPS Event List

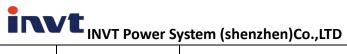
NO.	UPS events	Description		
1	Fault Clear	Manually clear fault		
2	Log Clear	Manually clear History log		
3	Load On UPS	Inverter feeds load		
4	Load On Bypass	Bypass feeds load		
5	No Load	No load		
6	Battery Boost	Charger is working in boost charging mode		
7	Battery Float	Charger is working in float charging mode		
8	Battery Discharge	Battery is discharging		
9	Battery Connected	Battery is connected already		
10	Battery Not Connected	Battery is not yet connected.		
11	Maintenance CB Closed	Manual maintenance breaker is closed		
12	Maintenance CB Open	Manual maintenance breaker is opened		
13	EPO	Emergency Power Off		
		Available power module capacity is less than the load capacity.		
14	Module On Less	Please reduce the load capacity or add extra power module to		
		make sure that the UPS capacity is big enough.		
15	Generator Input	Generator is connected and a signal is sent to the UPS.		
		Utility (Grid) is abnormal. Mains voltage or frequency exceeds the		
16	Utility Abnormal	upper or lower limit and results in rectifier shutdown. Check the		
		input phase voltage of rectifier.		
17	Bypass Sequence	Bypass voltage Sequence is reverse. Check if input power cables		
17	Error	are connected correctly.		
		This alarm is triggered by an inverter software routine when the		
		amplitude or frequency of bypass voltage exceeds the limit. The		
18	Bypass Volt	alarm will automatically reset if the bypass voltage becomes		
	Abnormal	normal.		
		First check if relevant alarm exists, such as "bypass circuit breaker		
		open", "Byp Sequence Err" and "Ip Neutral Lost". If there is any		



INVT Power System (shenzhen)Co.,LTD			
		relevant alarm, first clear this alarm.	
		1. Then check and confirm if the bypass voltage and frequency	
		displayed on the LCD are within the setting range. Note that the	
		rated voltage and frequency are respectively specified by "Output	
		Voltage" and "Output Frequency".	
		2. If the displayed voltage is abnormal, measure the actual bypass	
		voltage and frequency. If the measurement is abnormal, check the	
		external bypass power supply. If the alarm occurs frequently, use	
		the configurationsoftware to increase the bypass high limit set	
		point according to the user's suggestions	
10	Bypass Module	Bypass Module Fails. This fault is locked until power off. Or bypass	
19	Fail	fans fail.	
20	Bypass Module	Bypass current is over the limitation. If bypass current is under	
20	Over Load	135% of the rated current. The UPS alarms but has no action.	
21	Bypass Over Load Tout	The bypass overload status continues and the overload times out.	
		This alarm is triggered by an inverter software routine when the	
		frequency of bypass voltage exceeds the limit. The alarm will	
		automatically reset if the bypass voltage becomes normal.	
		First check if relevant alarm exists, such as "bypass circuit breaker	
		open", "Byp Sequence Err" and "Ip Neutral Lost". If there is any	
		relevant alarm, first clear this alarm.	
	Byp Freq Over	1. Then check and confirm if the bypass frequency displayed on the	
22	Track	LCD are within the setting range. Note that the rated frequency are	
		respectively specified by "Output Frequency".	
		2. If the displayed voltage is abnormal, measure the actual bypass	
		frequency. If the measurement is abnormal, check the external	
		bypass power supply. If the alarm occurs frequently, use the	
		configuration software to increase the bypass high limit set point	
		according to the user's suggestions	
		The load is on bypass because the output overload transfer and	
	Exceed Tx Times	re-transfer is fixed to the set times during the current hour. The	
23	Lmt	system can recover automatically and will transfer back to the	
		inverter with 1 hour	
24	Output Short	Output shorted Circuit.	
L	l.		


	Circuit	Fist check and confirm if loads have something wrong.
		Then check and confirm if there is something wrong with
		terminals, sockets or some other power distribution unit.
		If the fault is solved, press "Fault Clear" to restart UPS.
		Inverter turned off due to low battery voltage. Check the mains
25	Battery EOD	power failure status and recover the mains power in time
26	Battery Test	System transfer to battery mode for 20 seconds to check if
26		batteries are normal
27	Battery Test OK	Battery Test OK
20	Battery	System transfer to battery mode until to be 1.1*EOD voltage to
28	Maintenance	maintenance battery string
29	Battery	Battery maintenance succeed
29	Maintenance OK	
30	Module inserted	Power Module is inserted in system.
31	Module Exit	Power Module is pulled out from system.
32	Rectifier Fail	The N# Power Module Rectifier Fail, The rectifier is fault and results
32		in rectifier shutdown and battery discharging.
33	Inverter Fail	The N# Power Module Inverter Fail. The inverter output voltage is
33		abnormal and the load transfers to bypass.
	Rectifier Over	The N# Power Module Rectifier Over Temperature. The
	Temp.	temperature of the rectifier IGBTs is too high to keep rectifier
		running. This alarm is triggered by the signal from the temperature
		monitoring device mounted in the rectifier IGBTs. The UPS recovers
34		automatically after the over temperature signal disappears.
34		If over temperature exists, check:
		1. Whether the ambient temperature is too high.
		2. Whether the ventilation channel is blocked.
		3. Whether fan fault happens.
		4. Whether the input voltage is too low.
35	Fan Fail	At least one fan fails in the N# power module.
	Output Over load	The N# Power Module Output Over Load. This alarm appears when
36		the load rises above 100% of nominal rating. The alarm
		automatically resets once the overload condition is removed.
		1. Check which phase has overload through the load (%) displayed
		in LCD so as to confirm if this alarm is true.

		2. If this alarm is true, measure the actual output current to
		confirm if the displayed value is correct.
		• ,
		Disconnect non-critical load. In parallel system, this alarm will be
		triggered if the load is severely imbalanced.
	Inverter Overload	N# Power Module Inverter Over Load Timeout. The UPS overload
	Tout	status continues and the overload times out.
		Note:
		The highest loaded phase will indicate overload timing-out first.
		When the timer is active, then the alarm "module over load"
		should also be active as the load is above nominal.
37		When the time has expired, the inverter Switch is opened and the
		load transferred to bypass.
		If the load decreases to lower than 95%, after 2 minutes, the
		system will transfer back to inverter mode. Check the load (%)
		displayed in LCD so as to confirm if this alarm is true. If LCD
		displays that overload happens, then check the actual load and
		confirm if the UPS has over load before alarm happens.
	Inverter Over	The N# Power Module Inverter Over Temperature.
	Temp.	The temperature of the inverter heat sink is too high to keep
		inverter running. This alarm is triggered by the signal from the
		temperature monitoring device mounted in the inverter IGBTs. The
		UPS recovers automatically after the over temperature signal
38		disappears.
		If over temperature exists, check:
		Whether the ambient temperature is too high.
		Whether the ventilation channel is blocked.
		Whether fan fault happens.
		Whether inverter overload time is out.
		Inhibit system transfer from bypass to UPS (inverter). Check:
	On UPS Inhibited	Whether the power module's capacity is big enough for load.
39		Whether the rectifier is ready.
		Whether the bypass voltage is normal.
	Manual Transfer	whether the bypass voltage is normal.
40		Transfer to bypass manually
41	Byp For Manual Bypass	Escape from "transfer to hunges manually" command If URS has
41	Esc Manual Bypass	Escape from "transfer to bypass manually" command. If UPS has


	livi Power S	ystem (shenzhen)Co.,LTD been transferred to bypass manually, this command enable UPS to
		transfer to inverter.
		Battery Voltage is Low. Before the end of discharging, battery
42	Battery Volt Low	voltage is low warning should occur. After this pre-warning, battery
	Battery Voit Low	
42	Datton, Davers	should have the capacity for 3 minutes discharging with full load.
43	Battery Reverse	Battery cables are connected not correctly.
		The N# Power Module Inverter Protect. Check:
44	Inverter Protect	Whether inverter voltage is abnormal
		Whether inverter voltage is much different from other modules, if
		yes, please adjust inverter voltage of the power module separately.
		The mains neutral wire is lost or not detected. For 3 phases UPS,
45	Input Neutral Lost	it's recommended that user use a 3-poles breaker or switch
		between input power and UPS.
46	Bypass Fan Fail	At least one of bypass module Fans Fails
47	Manual Shutdown	The N# Power Module is manually shutdown. The power module
47	Wandar Shacaown	shuts down rectifier and inverter, and there's on inverter output.
48	Manual Boost	Manually force the Charger work in boost charge mode.
40	Charge	ivialitially lorce the charger work in boost charge mode.
49	Manual Float	Manually force the charger work in float charge mode.
43	Charge	
50	UPS Locked	Forbidden to shutdown UPS power module manually.
		Parallel cables error. Check:
	Parallel Cable Error	If one or more parallel cables are disconnected or not connected
51		correctly
		If parallel cable round is disconnected
		If parallel cable is OK
=0	Lost N+X	Lost N+X Redundant. There is no X redundant powers module in
53	Redundant	system.
	EOD Sys Inhibited	System is inhibited to supply after the battery is EOD (end of
54		discharging)
	Battery Test Fail	Battery Test Fail. Check if UPS is normal and battery voltage is over
55		90% of float voltage.
	Battery Maintenance Fail	Check
56		If UPS is normal and not any alarms
		If the battery voltage is over 90% of float voltage
		and watter y voltage to over 50% of flowe voltage

	invi rowei 3	ystem (shenzhen)Co.,LTD
		If load is over 25%
57	Ambient Over	Ambient temperature is over the limit of UPS. Air conditioners are
	Temp	required to regulate ambient temperature.
58	REC CAN Fail	Rectifier CAN bus communication is abnormal. Please check if
		communication cables are not connected correctly.
59	INV IO CAN Fail	IO signal communication of inverter CAN bus is abnormal. Please
33	INV IO CAN FAII	check if communication cables are not connected correctly.
60	INV DATA CAN Fail	DATA communication of inverter CAN bus is abnormal. Please
00	IIIV DAIA CAN Fall	check if communication cables are not connected correctly.
		The difference of two or more power modules' output current in
61	Power Share Fail	system is over limitation. Please adjust output voltage of power
		modules and restart UPS.
60		Synchronization signal between modules is abnormal. Please check
62	Sync Pulse Fail	if communication cables are not connected correctly.
		Input voltage of N# power module is abnormal.
	Input Volt Detect	Please check if the input cables are connected correctly.
63	Fail	Please check if input fuses are broken.
		Please check if utility is normal.
		Battery voltage is abnormal.
64	Battery Volt Detect	Please check if batteries are normal.
	Fail	Please check if battery fuses are broken on input power board.
65	Output Volt Fail	Output voltage is abnormal.
		Bypass voltage is abnormal.
66	Bypass Volt Detect	Please check if bypass breaker is closed and is good.
	Fail	Please check if bypass cables are connected correctly.
67	INV Bridge Fail	Inverter IGBTs are broken and opened.
		Outlet temperature of power module is over the limitation.
		Please check if fans are abnormal.
68	Outlet Temp Error	Please check if PFC or inverter inductors are abnormal.
		Please check if air passage is blocked.
		Please check if ambient temperature is too high.
		The difference of input current between every two phases is over
	Input Curr	40% of rated current.
69	Unbalance	Please check if rectifier's fuses, diode, IGBT or PFC diodes are
		broken.
		NONCIII

	1144 1 1 04461 3	Please check if input voltage is abnormal.
70	DC Bus Over Volt	Voltage of DC bus capacitors is over limitation. UPS shutdown
		rectifier and inverter.
		While soft start procedures are finished, DC bus voltage is lower
		than the limitation of calculation according utility voltage. Please
		check
71	REC Soft Start Fail	1. Whether rectifier diodes are broken
,1	NEC 3016 Start Fair	2. Whether PFC IGBTs are broken
		3. Whether PFC diodes are broken
		4. Whether drivers of SCR or IGBT are abnormal
		5. Whether soft start resistors or relay are abnormal
72	Relay Connect Fail	Inverter relays are opened and cannot work or fuses are broken.
73	Relay Short Circuit	Inverter relays are shorted and cannot be released.
74	PWM Sync Fail	PWM synchronizing signal is abnormal
		UPS works in intelligent sleep mode. In this mode, the power
		modules will be standby in turn. It will be more reliability and
		higher efficiency. It must be confirmed that remained power
75	Intelligent Sleep	modules' capacity is big enough to feed load. It must be conformed
		that working modules' capacity is big enough if user add more load
		to UPS. It's recommended that sleeping power modules are waken
		up if the capacity of new added loads is not sure.
		Manually transfer UPS to inverter. It's used to transfer UPS to
76	Manual Transfer to	inverter when bypass is over track. The interrupt time could be
		over 20ms.
		Input over current timeout and UPS transfer to battery mode.
	Input Over Curr Tout	Please check if input voltage is too low and output load is big.
77		Please regulate input voltage to be higher if it's possible or
		disconnect some loads.
	No Inlet Temp.	
78	Sensor	Inlet temperature sensor is not connected correctly.
	No Outlet Temp.	
79	Sensor	Outlet temperature sensor is not connected correctly.
	JEIIJUI	Inlet air is over temperature. Make sure that the operation
80	Inlet Over Temp.	temperature of UPS is between 0-40°C.
Q1	Canacitor Time	·
81	Capacitor Time	Reset timing of DC bus capacitors.

	T	ystem (snenznen)Co.,Li D
	Reset	
82	Fan Time Reset	Reset timing of fans.
83	Battery History Reset	Reset battery history data.
84	Byp Fan Time Reset	Reset timing of bypass fans.
85	Battery Over Temp.	Battery is over temperature. It's optional.
86	Bypass Fan Expired	Working life of bypass fans is expired, and it's recommended that the fans are replaced with new fans. It must be activated via software.
87	Capacitor Expired	Working life of capacitors is expired, and it's recommended that the capacitors are replaced with new capacitors. It must be activated via software.
88	Fan Expired	Working life of power modules' fans is expired, and it's recommended that the fans are replaced with new fans. It must be activated via software.
89	INV IGBT Driver Block	Inverter IGBTs are shutdown. Please check if power modules are inserted in cabinet correctly. Please check if fuses between rectifier and inverter are broken.
90	Battery Expired	Working life of batteries is expired, and it's recommended that the batteries are replaced with new batteries. It must be activated via software.
91	Bypass CAN Fail	The CAN bus between bypass module and cabinet is abnormal.
92	Dust Filter Expired	Dust filter need to be clear or replaced with a new one
102	Wave Trigger	Waveform has been saved while UPS fail
103	Bypass CAN Fail	Bypass and cabinet communicate with each other via CAN bus. Check If connector or signal cable is abnormal. If monitoring board is abnormal.
105	Firmware Error	Manufacturer used only.
106	System Setting Error	Manufacturer used only.
107	Bypass Over Temp.	Bypass module is over temperature. Please check If bypass load is overload

			If ambient temperature is over 40°C
			If bypass SCRs are assembled correctly
			If bypass fans are normal
108	Module I	ID	At least two modules are set as same ID on the power connector
	Duplicate		board, please set the ID as correct sequence