

Ekinops proprietary & confidential

Page 1 February 2010

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 2 February 2010

A EKINOPS

- Line Fiber
- Optical MUX / DMUX
- OADM / ROADM
- Optical Amplifiers
- Optical Dispersion Compensators
- Service cards

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ⇒ Receivers Sensitivity (10G)
- → Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 4 February 2010

X EKINOPS

Light propagation

Page 5 February 2010

X EKINOPS

Optimizing Optical Networks

Line Fiber – MM vs SM

- Multi Mode Fiber
 - ⇒ Large core
 - Multiple Light path transmitted
 - ⇒ Short distance

Single Mode Fiber

- ⇒ Thin core
- One Light path transmitted
- ➡ Long distance

Line Fiber – Transmission windows

- First Window:
- Second Window:
- Third Window:

850 nm Multi Mode

- 1310 nm Single Mode, Single Wavelength
- 1550 nm Single Mode, Single Wavelength or WDM

Page 7 February 2010

Optimizing Optical Networks

L-Band: 1565 to 1625 nm

Page 8 February 2010

Line Fiber – Attenuation

Expressed in dB/km

- 1310 nm band:
 0.3 to 0.35 dB/km
- 1550 nm Band
 ⇒ 0.22 to 0.25 dB/km

Page 9 February 2010

Optimizing Optical Net

🔹 🎊 EKINOPS

Line Fiber – Chromatic Dispersion

- wavelength do not travel the same speed in fiber
 - ➡ Expressed in ps/nm
- Propagation in the fiber broadens the transmitted pulse

- Each Fiber type has a "zero dispersion wavelength"
- Each Fiber type has a chromatic dispersion slope
 - Expressed in ps/nm2/km

Page 10 February 2010

Optimizing

Line Fiber – Polarization Mode Dispersion

- Ligth transmistted on two principal state of polarization in fiber:
 - → Horizontal
 - ⇒ Vertical

- Light do not travel the same speed on both axis
 - ⇒ DGD : Differential Group Delay
 - Varies with time and wavelength
- Broadens transmitted pulse
- PMD is a mean value of DGD
 - Expressed in picoseconds

Ekinops proprietary & confidential

Page 11 February 2010

Fiber Type	Att. @1550 nm (dB/km)	Chromatic Dispersion (ps/nm/km)	Applications
G652 SMF Single Mode Fiber	0.22 - 0.25	0 @ 1310 nm 17 @ 1550 nm	Metro and Long-HaulMost Commonly DeployedWell suited for DWDM

Fiber Type	Att. @1550 nm (dB/km)	Chromatic Dispersion (ps/nm/km)	Applications
G652 SMF Single Mode Fiber	0.22 - 0.25	0 @ 1310 nm 17 @ 1550 nm	Metro and Long-HaulMost Commonly DeployedWell suited for DWDM
G653 DSF Dispersion Shifted Fiber	0.25	0 @ 1550 nm	Transmission at 1550 nmDeployed in AsiaNot compatible with DWDM

Fiber Type	Att. @1550 nm (dB/km)	Chromatic Dispersion (ps/nm/km)	Applications
G652 SMF Single Mode Fiber	0.22 - 0.25	0 @ 1310 nm 17 @ 1550 nm	Metro and Long-HaulMost Commonly DeployedWell suited for DWDM
G653 DSF Dispersion Shifted Fiber	0.25	0 @ 1550 nm	 Transmission at 1550 nm Deployed in Asia Not compatible with DWDM
G654 PSCF Pure Silica Core Fiber	0.18	0 @ 1310 nm 17 @ 1550 nm	Better loss than G652Submarine applications

Fiber Type	Att. @1550 nm (dB/km)	Chromatic Dispersion (ps/nm/km)	Applications
G652 SMF Single Mode Fiber	0.22 - 0.25	0 @ 1310 nm 17 @ 1550 nm	Metro and Long-HaulMost Commonly DeployedWell suited for DWDM
G653 DSF Dispersion Shifted Fiber	0.25	0 @ 1550 nm	Transmission at 1550 nmDeployed in AsiaNot compatible with DWDM
G654 PSCF Pure Silica Core Fiber	0.18	0 @ 1310 nm 17 @ 1550 nm	Better loss than G652Submarine applications
G655 NZDSF Non Zero Dispersion Shifted Fiber	0.22	2 to 6 @ 1550 nm	Long HaulDesigned for DWDM Networks

Line Fiber – Fiber CD

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ➡ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Spectrum

Page 17 February 2010

A EKINOPS

DWDM Grid

- Defines spacing between DWDM optical channels
- Expressed in GHz
- Defined in G694.1
- 100 GHz grid
 ⇒ ~0.8 nm between channels
- 50 GHz grid
 - ⇒ ~0.4 nm between channels
- 25 GHz grid
 ⇒ ~0.2 nm between channels

Channel Frequency (THz)			Wavelength (nm)
25 GHz Grid	50 GHz Grid	100 GHz Grid	
193.100	193.10	193.1	1552.52
193.075	-	-	1552.73
193.050	193.05	-	1552.93
193.025	-	-	1553.13
193.000	193.00	193.0	1553.33

Optical MUX and DMUX

Transmit side:

Combines wavelengths from different transmitters on a single fiber

X EKINOPS

Optimizing Optical Networks

Receive side:

Separates several wavelengths from a single fiber to individual receivers

Optical MUX and DMUX

- Mux important parameter
 - ➡ Insertion loss (dB)
 - ⇒ Insertion Loss uniformity

D-MUX important parameters

- ➡ Insertion Loss (dB)
- ⇒ Channel isolation (dB)
- ⇒ Insertion Loss uniformity

Ekinops proprietary & confidential

MU

Page 20 February 2010

isolation

Optimizing Optical Net

C EKINOPS

OADM (Optical Add/Drop Mux)

Drop and Add Optical channels from / to a DWDM multiplex

CREWINDPS

Optimizing Optical Networks

Add /drop one or several pre-determined channels

ROADM (Reconfigurable-OADM)

 Drop and Add Optical one or several channels from / to a DWDM multiplex

Optimizing Optical Net

- Channels to be add/drop is configured by SW
- Active Device

OADM / R-OADM important parameters

Insertion Loss

⇒ Line port to drop port
⇒ Add port to Line port
⇒ Line port to Line port

Isolation

⇒ Line port to drop port
⇒ Add port to Line port
⇒ Line Port to Line Port

Optimizing Optical Networks

DWDM Network Components

- ⇒ Line Fiber
- Multiplexers and OADMs
- ➡ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ⇒ Receivers Sensitivity (10G)
- → Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 24 February 2010

A EKINOPS

Optical Amplifiers

Two main types

⇒ EDFAs: Erbium Doped Fiber Amplifiers

- Standalone Device
- Booster type
- In-Line Type
- Pre-Amp type

⇒ RAMAN

• Utilizes line fiber as amplification medium

EKINOPS

EDFA Optical Amplifiers

Page 26 February 2010

X EKINOPS

0

Optimizing Optical Networks

EDFA Optical Amplifiers

- Single Stage
 - ⇒ Booster
 - ⇒In-Line
 - ⇒Pre-Amp
 - ⇒Usually Fixed Gain

February 2010

Ekinops proprietary & confidential

Important Parameters

- ⇒Gain
- ⇒Noise Figure
 - Determines the level of noise amplifier adds to Signal

Ekinops proprietary & confidential

Page 28 February 2010

C EKINOPS

Optimizing Optical Networks

RAMAN Optical Amplifiers

- Associated to EDFA amplifiers
- Important Parameters
 - ⇒Line Fiber as clean as possible
 - Lowest attenuation possible
 - No optical reflections

⇒ Raman output has to be spliced on Line Fiber

EKINOPS

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers

Chromatic Dispersion Compensators

⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 32 February 2010

A EKINOPS

Chromatic Dispersion Compensators

- Compensate for Fiber Chromatic Dispersion
- One type per fiber type
 - 🗢 G652
 - ➡ G655
- Compensate for slope and distance
- Two main technologies:
 - ⇒ Fiber based
 - Length of compensation = $\sim 20\%$ of fiber length
 - Insertion Loss depends on fiber length to be compensated
 - ⇒ Fiber Bragg Grating Based
 - Constant insertion Loss whatever the length to be compensated for
 - DWDM grid dependent for some suppliers

Optimizing Optical Networks

Chromatic Dispersion Compensators

- 500 kms of fiber
 Each span component
 - Each span compensated
- Effets of
 - Dispersion Compensation
 - Dispersion compensation slope

Ekinops proprietary & confidential

Page 34 February 2010

Optimizing Optical Networks

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators

⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Attenuation (fiber,...)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 35 February 2010

A EKINOPS

Aggregation

⇒ n client signals on a line signal

⇒ Exemple: 8xGbE on 10G

Transponder 1 client signal on a line signal Exemple: 1x10GbE on 10G

Optical interfacing:

- ⇒SFP based for data rate <4 Gb/s
- ⇒XFP based for data rates of 10 Gb/s

Page 36 February 2010

Transport

Transmitter: generates a modulated wavelength compatible with DWDM transmission

C EKINOPS

- Receiver: detects a modulated wavelength from a DWDM transmission
- Forward Error Correction (FEC)

Digital algorithm correcting bit errors from the transmission line

Service card examples

- ➡ 10GbE transport into 10G
- PM1008LH
 - Sx GbE transport in 10G
 - ➡ FEC capable

PM404

- ➡ Quadruple transponder any rate up to 4GFC
- ➡ No FEC

PM253

- ⇒ 2xGbE transport in 2G5
- ➡ No FEC

PM253

FE to 4GFC

FE to 4GFC

GbE GbE

FE to 4GFC

to 4GFC

> 2G5G

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 39 February 2010

A EKINOPS

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ➡ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 40 February 2010

A EKINOPS

Fiber

Continuiting
 Contind
 Continuiting
 Continuiting
 Continuiting
 Contin

■ Fiber Type
⇒Defines chromatic Dispersion on the line

Fiber Spans

⇒BOL (Beginning Of Life) Attenuation⇒EOL (End Of Life) Attenuation

Number of spans

⇒ Defines where locate amplifiers

Page 42 February 2010

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ➡ Receivers Sensitivity (10G)
- Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 43 February 2010

A EKINOPS

Receiver Input Power Sensitivity

- Sensitivity Range
 - ➡ For a given BER
 - ➡ Usually 10⁻¹²
- Chromatic Dispersion
 - ➡ Range:
 - 40 kms: 0 to 800 ps/nm
 - 80 kms: 0 to 1600 ps/nm
 - ⇒ Power penalty: usually 2 dB

OTX-TLH60

⇒	Overload:	0 dBm
⇒	Sensitivity BtB:	-20 dBm

Sensitivity 80 kms: −18 dBm

OTX-TLH80

- → Overload:
- Sensitivity BtB:
- Sensitivity 80 kms:

-9 dBm -26 dBm

-24 dBm

Page 44 February 2010

Optimizing Optical Networks

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- Receivers Sensitivity (10G)
- ➡ Optical Signal to Noise Ratio (OSNR)
- ⇒ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 45 February 2010

A EKINOPS

- Expressed in dB
- Noise measured in a 0.1 nm bandwidth

Page 46 February 2010

S EKINOPS

Optimizing Optical Net

Receiver OSNR Sensitivity

- OSNR sensitivity
 - ➡ For a given BER
 - ➡ Usually 10⁻¹²
- Chromatic Dispersion
 - ➡ Range:
 - 40 kms: 0 to 800 ps/nm
 - 80 kms: 0 to 1600 ps/nm
 - ⇒ OSNR penalty: usually 2 dB
- OTX-TLH60 / OTX-TLH80
 - ⇒ OSNR Sensitivity BtB: 22 dB
 - ⇒ OSNR Sensitivity 50 kms: 24 dB

S EKINOPS

Page 47 February 2010

Optimizing Optical Networks

DWDM Network Components

- ⇒ Line Fiber
- ⇒ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ➡ Receivers Sensitivity (10G)
- Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ⇒ Non Linear Effects
- ⇒ DWDM Line Examples

Ekinops proprietary & confidential

Page 48 February 2010

A EKINOPS

FEC effects on input power sensitivity

- Improves input power Sensitivity
- Characterized in gain expressed in dB
- 5 dB gain is 20 kms more distance on a single span

Page 49 February 2010

FEC effect on OSNR

Improves OSNR Sensitivity

- Characterized in gain expressed in dB
- 6 dB gain allows quadruple the number of spans on a DWDM line

• 🌣 EKINOPS

Page 50 February 2010

Optimizing Optical Net

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 51 February 2010

X EKINOPS

Transmission Non Linear Effects

Fiber Refractive index depending on power per wavelength in the fiber

Kerr effects

- ⇒ SPM: Self Phase Modulation
- ⇒ XPM: Cross Phase Modulation
- ⇒FWM: Four Wave Mixing

SRS: Stimulated Raman ScatteringSBS: Stimulated Brilloin Scattering

Optimizing Optical Networks

EKINOPS

- Single channel effect
- Fiber refractive index depends on optical power
- Optical Spectrum broadening
- Induce temporal pulse compression with the fiber positive chromatic dispersion (ps/nm.km)

Page 53 February 2010

XPM events (i.e. refractive index change at the power transients of the copropagating channels)

- Multichannel effect
- Same kind of effect on the refractive index than SPM
- Induce non-linear neighbourging channels X-talk
- Depends on

XPM

- ⇒ Fiber type (chromatic dispersion)
- Per wavelength launched power in the fiber
- ⇒DWDM grid

Optimizing Optical Networks

X EKINOPS

Page 54 February 2010

FWM

EKINOPS

- Multichannel effect
- Depending on
 - ⇒ Fiber type (chromatic dispersion)
 - Power per wavelength launched power in the fiber
 - ⇒DWDM grid
- Without FWM

 λ_2

Λı

Ekinops proprietary & confidential

Page 55 February 2010

- Single channel effect
- Depends on channel power launched in fiber
- Part of launched power is back reflected
- Limit can be pushed further by low frequency modulation of the 10G transmitted signal

⇒ Called SBS supression tone

• KINOPS

- Multi channel effect
- Depends on power per channel
- Short wavelength pumps long wavelengths

NLE Thresholds examples

Single Span transmission

Fiber	Grid	FWM	SBS	SPM
G652	200 GHz	NA		14 dBm
	100 GHz	NA	17 dBm	
	50 GHz	12 dBm		
G655	200 GHz	12 dBm		12 dBm
	100 GHz	10 dBm	14 dBm	
	50 GHz	8 dBm		

Threshold lowers with number of spans

Ekinops proprietary & confidential

EKINOPS

DWDM Network Components

- ⇒ Line Fiber
- ➡ Multiplexers and OADMs
- ⇒ Optical Amplifiers
- Chromatic Dispersion Compensators
- ⇒ Service Cards (10G, 2G5,...)

Main parameters of a DWDM design

- ⇒ Fiber (attenuation, chromatic dispersion)
- ⇒ Receivers Sensitivity (10G)
- ⇒ Optical Signal to Noise Ratio (OSNR)
- ➡ Forward Error Correction (FEC)
- ➡ Non Linear Effects
- ⇒ DWDM Line Examples

Page 59 February 2010

A EKINOPS

Important Parameters

- ⇒ 10G transmit power
- ⇒ Attenuation
 - MUX
 - Line Fiber
 - DMUX
- ⇒ 10 receiver
 - input power sensitivity
 - Residual chromatic dispersion

Page 60 February 2010

DWDM Line 2

Important Parameters

- ➡ Booster
 - output power
 - gain
 - 10G transmit power per channel on booster output
- ➡ Attenuation
 - MUX
 - Line Fiber
 - DMUX
- ⇒ Chromatic Dispersion
- ⇒ 10G receiver
 - input power sensitivity
 - Residual chromatic dispersion

Ekinops proprietary & confidential

Page 61 February 2010

DWDM Line 3

- Important Parameters
 - ➡ Booster
 - output power
 - gain
 - 10G transmit power per channel on booster output
 - ➡ Line Fiber
 - Attenuation
 - Chromatic Dispersion
 - ➡ Pre-Amp
 - Gain
 - OSNR per 10G channel
 - ➡ 10G receiver
 - OSNR sensitivity
 - Residual Chromatic dispersion

Page 62 February 2010

- Important Parameters
 - ➡ Booster / In-Line
 - gain
 - 10G transmit power per channel on booster output
 - ➡ Line Fiber
 - Attenuation
 - Chromatic Dispersion
 - ➡ Pre-Amp
 - Gain
 - OSNR per 10G channel
 - ⇒ 10G receiver
 - OSNR sensitivity
 - Residual chromatic Dispersion

Ekinops proprietary & confidential

Page 63 February 2010

DWDM Line 5

- Important Parameters
 - ➡ Booster
 - gain
 - 10G transmit power per channel on booster output
 - ⇒ Line Fiber
 - Attenuation
 - Chromatic Dispersion
 - ➡ Pre-Amp
 - Gain
 - OSNR per 10G channel
 - ⇒ 10G receiver
 - OSNR sensitivity
 - Residual chromatic Dispersion

Page 64 February 2010