

ОКПД2 26.30.11.131

КОНТРОЛЛЕР МОНИТОРИНГА И УПРАВЛЕНИЯ CEPИИ SNR-ERS20xx

Руководство по эксплуатации РГСД.424339.005РЭ

Содержание

Обозначения и сокращения	4
1 Описание и работа	6
1.1 Назначение изделия	6
1.2 Технические характеристики	7
1.3 Функциональные характеристики ПО	9
1.4 Состав устройства	9
1.5 Внешний вид	9
1.6 Маркировка	13
2 Использование по назначению	14
2.1 Условия эксплуатации	14
2.2 Подготовка изделия к использованию	14
2.2.1 Меры безопасности	14
2.2.2 Установка на DIN-рейку	15
2.2.3 Установка на плоскую поверхность	16
2.2.4 Установка SIM карты и подключение антенны ¹	16
2.2.5 Подключение к портам	17
2.2.6 Начальная настройка	18
2.2.7 Возврат к заводским настройкам	18
2.3 Питание	19
2.4 Аппаратные интерфейсы Контроллера	20
2.4.1 Программно-управляемые выходы питания внешних устройств PWR5 и PWR12	20
2.4.2 Программно-определяемые порты вход/выход DIO	23
2.4.3 Аналоговый вход AI	28
2.4.4 Контактная группа реле	31
2.4.5 Аналоговый выход DAC	32
2.4.6 RS-232	33
2.4.7 RS-485	33
2.4.8 1-Wire	34
2.4.9 Ethernet	37
2.4.10 LTE модем	38
3 Техническое обслуживание и ремонт	39
3.1 Общие указания и меры безопасности	39
3.2 Порядок технического обслуживания	39
3.3 Текущий ремонт	39
4 Хранение	41
5 Транспортирование	42
6 Утипизация	43

Настоящее руководство по эксплуатации распространяется на Контроллеры мониторинга и управления серии SNR-ERS20xx (далее – Контроллер).

Руководство по эксплуатации содержит описание Контроллера, его технические характеристики, указания по подготовке к работе, описание пользовательской периферии, а также условия эксплуатации и хранения.

Основные функциональные характеристики программного обеспечения Контроллера указаны в руководстве пользователя.

Обозначения и сокращения

В настоящем Руководстве применяются следующие обозначения и сокращения:

AUX	(Auxiliary) – вспомогательный источник питания		
AI	Analog Input – аналоговый вход Контроллера		
AWG	American Wire Gauge – американская система размера диаметра жил проводов		
DAC	Digital-to-Analog Converter – устройство, преобразующее цифровой сигнал и аналоговый. Применительно к Контроллеру – аналоговый выход		
DIO	Digital Input/Output – программно-определяемые порты вход/выход Контроллера		
DI	Digital Input – программно-определяемый вход Контроллера		
DO	Digital Output – программно-определяемый выход Контроллера		
GSM	Global System for Mobile communications – глобальный стандарт цифровой мобильной сотовой связи		
НТТР	Hypertext Transfer Protocol – протокол прикладного уровня, который используется для передачи данных в сети Интернет		
IEEE 802.3at	Международный стандарт, определяющий технологию РоЕ		
LTE	Long-Term Evolution – стандарт беспроводной высокоскоростной передачи данных для мобильных телефонов и других устройств, работающих с данными		
MQTT	Message Queuing Telemetry Transport – компактный и открытый протокол обмена данными, разработанный для передачи телеметрических данных между устройствами с низким уровнем производительности и ограниченными ресурсами.		
Master/slave	(Ведущий/ведомый) — модель взаимодействия в телекоммуникационных и информационных системах, в которой одно главное устройство (ведущее) осуществляет однонаправленное управление подчинённым (ведомым) устройством или их группой.		
NO/NC	Normally Open/Normally Closed (нормально-разомкнутый/нормально-замкнутый) –		
(H.P./H.3.)	контакты, находящиеся в разомкнутом/замкнутом состоянии при нормальных условиях (применительно к реле нормальными считаются условия, когда на катушку не подаётся ток)		
Open Drain (открытый сток)	Тип выхода порта ввода-вывода, который может либо подтягивать линию к земле (логический "0"), либо переходить в высокоимпедансное состояние (отключаться). Такой выход не может сам выдавать высокий уровень (логическую "1") — для этого требуется внешняя подтяжка к питанию через резистор.		

РоЕ	Power over Ethernet – технология, позволяющая передавать удалённому устройству электрическую энергию вместе с данными через стандартную витую пару в сети Ethernet		
Pull-up	(Подтяжка) — цифровой вход контроллера, который через резистор подключен к источнику питания (+3,3 B, +5 B). Это нужно для четкого определения логического уровня сигнала, когда внешний источник отключен		
PWR5, PWR12	(Power 5 V/12 V) – Программно-управляемые выходы питания внешних устройств		
SNMP	Simple Network Management Protocol – протокол прикладного уровня для удалённого управления и мониторинга сетевыми устройствами		
SPDT	Single Pole, Double Throw — реле с одним общим контактом, который в зависимости от положения реле замыкается либо с одним, либо с другим из двух выходных контактов, обеспечивая переключение электрической цепи между двумя направлениями (цепями)		
UTP	Unshielded Twisted Pair – (Неэкранированя витая пара) – вид кабеля связи, представляющего собой одну или несколько пар изолированных проводников, скрученных между собой		
WEB-интерфейс	Набор инструментов на странице браузера, с помощью которых пользователь взаимодействует с сайтом, программой или приложением		
ИБП	Источник бесперебойного питания		
Сухой контакт	Сленговый термин в области промышленной автоматики и сигнализации, обозначающий дискретный выходной сигнал прибора. Слово «сухой» означает, что на клеммах сухого контакта нет никакого напряжения, если клеммы не подключены к другому оборудованию. Сухие контакты удобны тем, что их можно подключить практически в любую цепь, при этом не важен род тока и величина напряжения		
Токовая петля	Метод передачи данных в промышленной автоматизации, где информация кодируется не напряжением, а силой тока в замкнутой цепи. Самый распространенный стандарт — 4—20 мА, где 4 мА соответствует минимальному значению сигнала, а 20 мА — максимальному		

1 Описание и работа

1.1 Назначение изделия

Контроллеры серии SNR-ERS20xx предназначены для удалённого контроля и управления внешними устройствами, сбора данных с цифровых, аналоговых и дискретных датчиков, обработки полученной информации и передачи её на вышестоящие уровни систем управления, в том числе по GSM^1 каналу связи.

Областями применения устройства являются автоматизированные системы сбора и передачи информации, диспетчерского управления на объектах предприятий: электросвязи, электроэнергетики, нефтегазодобывающей промышленности, операторов связи, а также на предприятиях других отраслей промышленности.

Настройка и конфигурирование устройства осуществляется при помощи встроенного WEB-интерфейса. Удалённое управление устройством и контроль за состоянием наблюдаемых параметров осуществляется посредством протоколов HTTP и SNMP.

ВНИМАНИЕ!

Производитель вправе изменять конструкцию устройства без уведомления эксплуатирующих предприятий.

6

¹доступно только в версиях SNR-ERS201х

1.2 Технические характеристики

Основные технические характеристики Контроллеров представлены в таблице 1.1. Технические характеристики Контроллеров SNR-ERS200x и SNR-ERS201x идентичны и различаются только наличием дополнительного канала связи GSM у версий SNR-ERS201x.

Таблица 1.1 – Основные технические характеристики

		Active PoE	
		в соответствии с	
	Haraway was wara gwayya wayay ga wayay BaE (aayanyay)	IEEE 802.3at (class 4)	
	Номинальное напряжение питания по каналу РоЕ (основной), U _{POE} .ном	Passive PoE c	
	OPOE.HOM	напряжением	
		источника	
Питание		от 36 до 57 В	
	Номинальное напряжения питания по каналу AUX (дополнительный), U _{AUX} .ном	12 B	
	Диапазон допустимых напряжений питания по каналу AUX, U _{AUX.MAKC}	11–15 B	
	Собственная потребляемая мощность	не более 3 Вт	
	Максимально допустимая потребляемая мощность (собственная и пользовательская нагрузка)	не более 24 Вт	
	Ethernet 10/100 BASE-T (RJ-45)	1	
	1-Wire (RJ-12)	1	
	DIO (программно-определяемые порты вход/выход)	5	
	$U_{DI/DO MAKC.} = 48 \text{ B}; I_{DI(SOURCE) MAKC.} = 1 \text{ MA}; I_{(DO)SINK MAKC.} = 0,3 \text{ A}$	5	
	PWR5 (программно-управляемое выходное питание для внешних		
	устройств)	1	
	$U_{PWR5} = 5 \text{ B}; I_{PWR5 \text{ MAKC}} = 1 \text{ A}$ PWR12 (программно-управляемое выходное питание для		
	внешних устройств)	1	
	$U_{PWR12} = 12 \text{ B}; I_{PWR12 \text{ MAKC}} = 0.3 \text{ A}$		
Пользовательские	АІ (аналоговый вход, программно определяемый режим		
интерфейсы, шт.	измерения – по напряжению «U _{изм»} или току «I _{изм»})		
ттерфенеы, шт.	$U_{\rm H3M} =$ от 0 до 76 В (с точностью до 1 % во всем диапазоне при	2	
	нормальных условиях эксплуатации); $I_{\text{ИЗМ}} = \text{ от } 0$ до 20 мA (с точностью до 1 мA при нормальных		
	условиях эксплуатации)		
	DAC (аналоговый выход, программно-регулируемый источник		
	напряжения с функцией защиты от перегрузки по току)	2	
	$U_{\rm BЫX} =$ от 0 до 10 B (с точностью до 1 %); $I_{\rm BЫX.MAKC} = 20$ мА		
	Relay (контактная группа реле, конфигурация контактов – SPDT,		
	механическая стойкость – 1*107 переключений, время включения	1	
	– не более 10 мс, время выключения – не более 5 мс) U _{AC MAKC} . = 242 B; U _{DC MAKC} . = 28 B;	1	
	I _{COM-NO MAKC.} = 10 A; I _{COM-NC MAKC.} = 5 A		
L	Teem no name. 19 7-2) recomme mane. 9 11		

П	RS-232 (макс. скорость 115200 Бит/с, длина линии не более 15 м, количество поддерживаемых устройств 1 шт.)	1
Пользовательские интерфейсы, шт.	RS-485 (макс. скорость 115200 Бит/с, длина линии не более 1200 м., количество поддерживаемых устройств не более 32 шт. единичной нагрузки)	1
	Ethernet 10/100 Base	1
Интерфейсы связи, шт	LTE ¹ (2 SIM формата NANO) Поддерживаемые диапазоны: - LTE-FDD B1/B2/B3/B4/B5/B7/B8/B12/B13/B17/B18/B19/B20/B25/B26/B28/B28/B66; - LTE-TDD B34/B38/B39/B40/B41; - GSM 850/900/1800/1900. Скорость передачи данных: - LTE-FDD: прием — не более 5 Мбит/с, передача — не более 10 Мбит/с; - LTE-TDD: прием — не более 4 Мбит/с, передача — не более 6 Мбит/с.	1
Габаритные размеры Контроллера с установленными ответными частями разъемов, мм, не более		121 x 73 x 35
Габаритные размер	215 x 153 x 53	
Масса Контроллер	0,32	
Масса Контроллер	0,7	

 $^{^{1}\}text{только}$ для версий с LTE модемом SNR-ERS201x.

1.3 Функциональные характеристики ПО

Основные функциональные характеристики ПО Контроллера указаны в руководстве пользователя, доступному по ссылке:

https://data.nag.wiki/SNR-ERS/Controllers/2000/Documents/

1.4 Состав устройства

Основная комплектность поставки Контроллера представлена в таблице 1.3. По условиям договора на поставку комплектность Контроллера может быть изменена, при этом все изменения должны быть зафиксированы в паспорте на Контроллер РГСД.424339.005ПС.

Таблица 1.3 – Комплект поставки

Наименование	Количество, шт.
1. Контроллер мониторинга и управления SNR-ERS200x1	1
2. Паспорт	1
3. Кронштейн крепления на плоскую поверхность ²	1
4. Кронштейн крепления на DIN-рейку ²	1
5. Винт М3х4 с потайной головкой, крестообразный, чёрный ²	2
6. Отвёртка шлицевая, 2х40 мм ²	1
7. Шнур коммутационный U/UTP 4-х парный cat.5e, 1 м ²	1
8. Инжектор Passive PoE, 48 B ²	1
9. GSM Антенна (с кабелем 2 м) ³	1
10. Dual nano-SIM tray (держатель для двух сим-карт формата nano) ³	1
11. Комплект ответных частей разъёмов (установлены в Контроллер)	1
12. Комплект упаковки	1
13. Руководство по эксплуатации (в электронном виде) ⁴	_
14. Руководство пользователя (в электронном виде) ⁴	_

¹в версии с LTE модемом – Контроллер мониторинга и управления SNR-ERS201х

https://data.nag.wiki/SNR-ERS/Controllers/2000/Documents/

1.5 Внешний вид

Внешний вид Контроллеров представлен на рисунках 1.1-1.3. Разъемы, индикаторы и органы управления Контроллеров представлены на рисунке 1.4.

²не поставляется в версиях SNR-ERS2002 и SNR-ERS2012

³только для версии с LTE модемом (Контроллер SNR-ERS201x)

⁴документы в электронном виде расположены по ссылке:

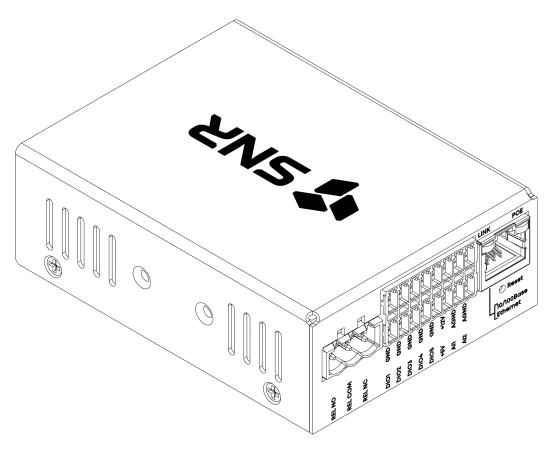


Рисунок 1.1 – Внешний вид Контроллеров SNR-ERS20xx, вид 1

Рисунок 1.2 – Внешний вид Контроллеров SNR-ERS200x, вид 2

Рисунок 1.3 – Внешний вид Контроллеров SNR-ERS201x

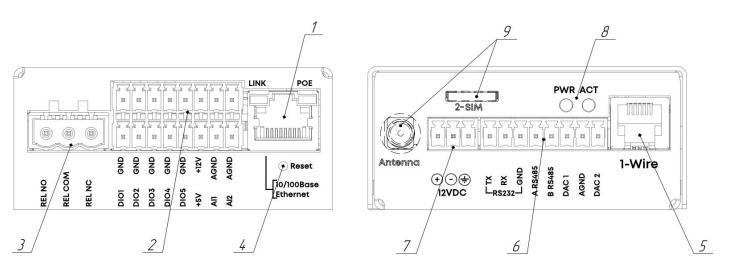


Рисунок 1.4 – Разъемы, индикаторы и органы управления

Условные обозначения ("маркировка"):

- 1. Розетка RJ-45 (8p8c) "10/100Base-T Ethernet":
- "LINK" индикатор наличия соединения и передачи данных по Ethernet, цвет зеленый;
- "РОЕ" индикатор наличия питания по каналу РоЕ, цвет желтый.
- 2. Клеммный разъем DIO, AI:
- "DIO1" ... "DIO5" программно-определяемые порты вход/выход;
- "GND" земля (общий провод) для DIO, PWR5, PWR12;
- "+5V" PWR5, программно-управляемое выходное питание для внешних устройств;
- "+12V" PWR12, программно-управляемое выходное питание для внешних устройств;
- "AII", "AI2" AI, аналоговый вход, программно-определяемый режим измерения по напряжению или току;
 - "AGND" аналоговая земля (общий провод), только для AI.
 - 3. Клеммный разъем Relay:
 - "REL COM" общий контакт реле;
 - "REL NO" нормально-разомкнутый контакт реле;
 - "REL NC" нормально-замкнутый контакт реле;
 - 4. Кнопка Reset;
 - 5. Розетка RJ-12 (6р6c) "1-Wire";
 - 6. Клеммный разъем RS-232, RS-485, DAC:
 - "RS232-TX" линия передатчика RS-232;
 - "RS232-RX" линия приёмника RS-232;
 - "RS232-GND" земля (общий провод), только для RS-232;
 - "A RS485", "B RS485" шина RS-485;
 - "DAC1", "DAC2" DAC, аналоговый выход, программно-регулируемый источник напряжения;
 - "AGND" аналоговая земля (общий провод), только для DAC;
 - 7. Клеммный разъем AUX:
 - "+" положительный потенциал источника питания (плюс);
 - "-" земля (общий провод) источника питания (минус);
 - "

 "

 "

 защитное заземление (РЕ, корпус).
 - 8. Индикация:
 - "PWR" индикатор наличия питания по каналу AUX;
 - "АСТ" индикатор текущего состояния Контроллера;
 - 9. LTE молем¹:
 - "Antenna" SMA разъем для подключения GSM, LTE антенны;
 - "SIM" push-push Dual nano-SIM tray (держатель для двух сим-карт формата nano)

¹Только для версий с LTE модемом SNR-ERS201x

Режимы работы всех индикаторов описаны в таблице 1.4.

Таблица 1.4 – Режимы работы индикаторов

Обозначение индикатора	Назначение индикатора	Состояние	Значение состояния
LINK	Индикация наличия соединения и обмена	Выключен	Соединение по Ethernet отсутствует
	данными по Ethernet	Зелёный	Соединение по Ethernet
		Зелёный мигающий	установлено Обмен данными по Ethernet
POE	Индикация наличия питания по каналу РоЕ	Выключен	Питание по каналу РоЕ отсутствует
		Желтый	Контроллер работает от питания по каналу РоЕ
PWR	Индикация наличия питания по каналу AUX	Выключен	Питание по каналу AUX отсутствует
	·	Зелёный	Питание по каналу AUX присутствует
ACT	Индикация текущего состояния Контроллера	Зелёный мигающий с частотой 3–4 Гц	Контроллер в процессе загрузки ПО
		Зелёный мигающий с частотой 1 Гц	ПО загружено, Контроллер готов к работе

1.6 Маркировка

Наклейка с артикулом, серийным номером, IP-адресом по умолчанию и данными для входа в WEB-интерфейс располагается на нижней стороне Контроллера.

2 Использование по назначению

2.1 Условия эксплуатации

Контроллеры SNR-ERS200х и SNR-ERS201х разработаны для эксплуатации в условиях макроклиматических районов с умеренным и холодным климатом (УХЛ, с расширенным температурным диапазоном).

Условия эксплуатации:

- температура окружающей среды от минус 40 °C до плюс 60 °C;
- относительная влажность не более 80 % при температуре 25 °C, без образования конденсата;
 - атмосферное давление от 630 до 800 мм рт.ст.

ВНИМАНИЕ!

Несоблюдение условий эксплуатации может нарушить работоспособность Контроллера.

На отказы Контроллера, ставшие следствием этого, гарантийные обязательства не распространяются.

2.2 Подготовка изделия к использованию

2.2.1 Меры безопасности

К монтажу и работе с Контроллерами допускается квалифицированный персонал, изучивший данное Руководство и имеющий группу по электробезопасности не ниже второй.

ВНИМАНИЕ!

Если Контроллер работает некорректно, необходимо обратиться в службу технической поддержки. Попытка самостоятельного ремонта Контроллера пользователем ведет к утрате права на гарантийное обслуживание!

ЗАПРЕЩАЕТСЯ установка Контроллера в местах воздействия прямых солнечных лучей и вблизи источников, излучающих тепло, а также высокие электромагнитные помехи.

ВНИМАНИЕ!

Несмотря на внутреннюю, предусмотренную производителем защиту, пользователь должен обеспечивать такую эксплуатацию устройства, чтобы ограничения, введённые производителем, соблюдались в обязательном порядке для недопущения вывода Контроллера из строя или в нештатный режим работы.

2.2.2 Установка на DIN-рейку

Установка Контроллера на DIN-рейку производится с помощью соответствующего кронштейна и винтов M3x4 из комплекта поставки.

Допускается два варианта установки: нижней или боковой стороной (см. рисунок 2.1).

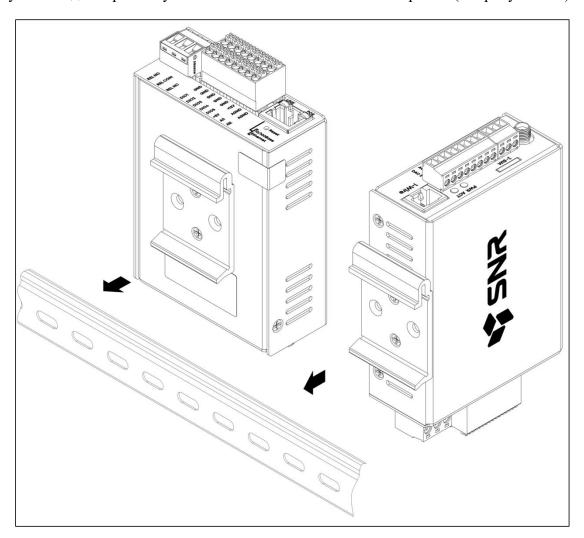


Рисунок 2.1 – Установка Контроллера на DIN-рейку

2.2.3 Установка на плоскую поверхность

Установка Контроллера на плоскую поверхность (стену) производится с помощью соответствующего кронштейна и винтов M3x4 из комплекта поставки.

Крепёжные метизы в комплект поставки не входят.

Допускается два варианта установки: нижней или боковой стороной (см. рисунок 2.2).

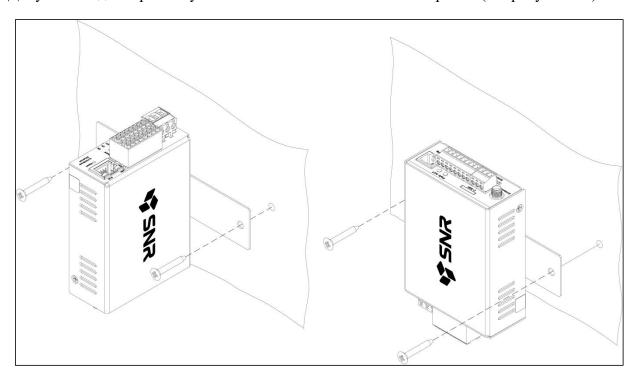


Рисунок 2.2 – Установка Контроллера на плоскую поверхность

2.2.4 Установка SIM карты и подключение антенны¹

Для установки SIM-карты необходимо слегка нажать на лоток, после чего вытащить его, установить карту формата nano и вставить лоток обратно до щелчка.

Для эффективного приёма сигнала использовать внешнюю антенну из комплекта поставки Контроллера.

ВНИМАНИЕ! Чрезмерные усилия (более 1,7 Н·м) при затягивании гайки SMA-разъема антенны могут привести к повреждению резьбы или деформации разъема!

Рекомендуемый момент затяжки: 0,9–1,36 Н⋅м.

¹Только для версий с LTE модемом (Контроллер SNR-ERS201x)

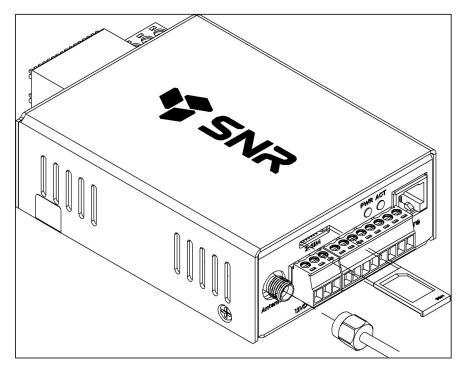


Рисунок 2.3 – Подключение антенны и установка SIM-карты для Контроллера SNR-ERS201x

2.2.5 Подключение к портам

Способы подключения и диапазоны сечений коммутируемых проводов приведены в таблице 2.1.

Многожильные провода при подключении должны быть оконцованы (например, втулочными наконечниками или гильзами) для обеспечения надёжного контакта. Одножильные провода допускается не оконцовывать.

Таблица 2.1 – Способы подключения и диапазоны сечений коммутируемых проводов

Коннектор	Диапазон сечений коммутируемых проводов	Способ подключения
Реле	0,2–2,5 мм² (28–12 AWG)	клеммное соединение
AUX		
RS232, RS485, DAC	0,2–1,5 мм² (28–16 AWG)	разъем с подпружиненными контактами
DIO, AI		

Для подключения проводов к разъему с подпружиненными контактами достаточно просто вставить провод до характерного щелчка. Чтобы извлечь провод необходимо предварительно нажать на оранжевый фиксатор (удобно делать это отверткой из комплекта поставки Контроллера).

ВНИМАНИЕ! При подключении проводов к клеммному соединению следует соблюдать рекомендуемый момент затяжки винтов 0,4 Н·м. Чрезмерные усилия при затяжке могут привести к повреждению резьбы или корпуса клеммного разъема; слабо затянутый контакт приведет к повышенному нагреву.

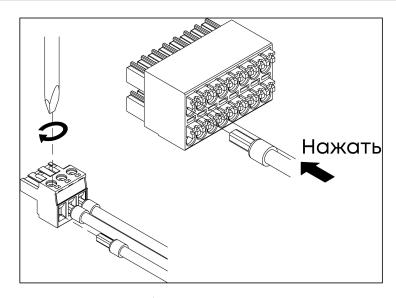


Рисунок 2.4 – Подключение кабеля к ответным частям разъемов Контроллера

2.2.6 Начальная настройка

Для получения доступа к графическому Web-интерфейсу необходимо указать IP-адрес Контроллера в адресной строке браузера. В открывшейся форме указать логин и пароль, нажать кнопку "Войти".

По умолчанию установлены следующие значения:

- IP-адрес: 192.168.1.1

логин: adminпароль: admin

2.2.7 Возврат к заводским настройкам

Для приведения Контроллера в исходное состояние (сброс настроек) необходимо нажать и удерживать кнопку "Reset" в течение 5 сек. Успешный сброс подтвердится перезагрузкой – индикатор "ACT" должен начать мигать с частотой 3–4 Гц.

2.3 Питание

Электропитание Контроллеров SNR-ERS200х и SNR-ERS201х может осуществляется по любому из двух каналов:

- 1) через Ethernet разъем по технологии PoE в соответствии с IEEE 802.3at (class 4) или Passive PoE (принудительная подача питания напрямую от источника постоянного тока, например, PoE инжектора, входящего в комплект поставки). Работа Passive PoE гарантируется при подаче питания в диапазоне от 36 до 57 В по проводникам UTP кабеля на контакты 4, 5 и 7, 8 Ethernet разъема, полярность подключения значения не имеет;
- 2) через выделенный разъем AUX от внешнего источника питания постоянного тока с номинальным напряжением 12 В (далее AUX). При этом Контроллеры поддерживают максимальное значение напряжения питания по AUX не более 15 В, что позволяет использовать в качестве источника питания внешний аккумулятор и систему зарядки.

Контроллеры, при одновременном наличии питания по каналам PoE и AUX, поддерживают функцию резервирования питания. Приоритетным источником является канал питания PoE – при его наличии потребление тока по каналу питания AUX отсутствует, а сам канал AUX работает в режиме ожидания.

ВНИМАНИЕ! Канал питания РоЕ имеет гальваническую развязку от цепей внутреннего питания в соответствии с требованиями IEEE 802.3at и электробезопасности.

Канал питания AUX связан с внутренними цепями питания напрямую, гальваническая развязка отсутствует.

Канал питания AUX имеет встроенную защиту от превышения максимального порогового напряжения 15,7 В, а также защиту от переполюсовки.

Эквивалентная схема организации питания Контроллеров приведена на рисунке 2.5.

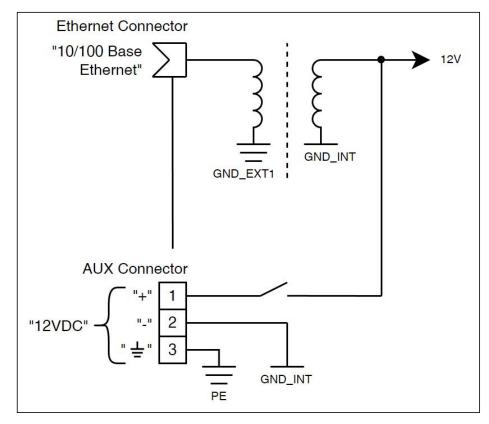


Рисунок 2.5 – Эквивалентная схема организации питания

2.4 Аппаратные интерфейсы Контроллера

2.4.1 Программно-управляемые выходы питания внешних устройств PWR5 и PWR12

Контроллеры SNR-ERS200х и SNR-ERS201х поддерживают возможность питать внешние подключаемые устройства (датчики, нагрузку и т.п.) без использования дополнительных внешних источников напряжения. Для подключения питания к внешним устройствам используются выходы PWR5 и PWR12. Эквивалентная схема организации программно-управляемого выходного питания внешних устройств представлена на рисунке 2.6.

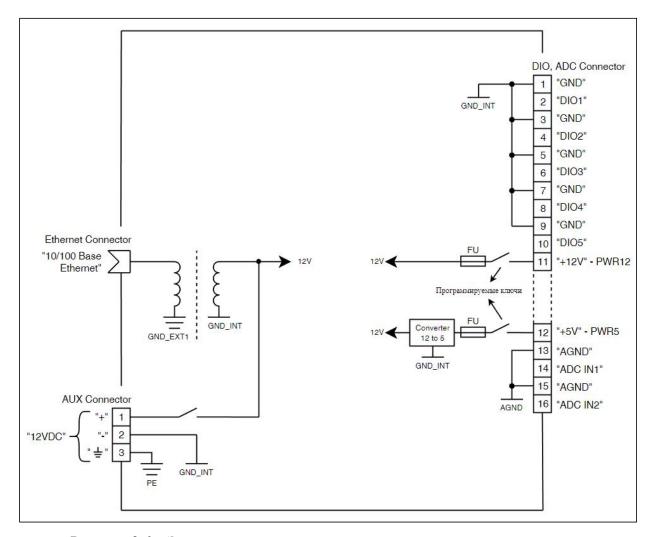


Рисунок 2.6 – Эквивалентная схема организации программно-управляемых выходов питания внешних устройств

Технические характеристики PWR5:

- 1) номинальное выходное напряжение 5±0,25 В;
- 2) максимальный выходной ток не более 1 А;
- 3) встроенная защита от перегрузки по току и превышения уровня выходного напряжения больше 6 В;
 - 4) гарантированная работа на ёмкостную нагрузку не более 500 мкФ.

Примечание — Ёмкостная наргузка возникает, когда к выходам питания внешних устройств подключаются устройства с высоким входным ёмкостным сопротивлением (датчики температуры с входными RC-фильтрами) или длинными кабелями, действующими как паразитные конденсаторы.

<u>Технические характеристики PWR12:</u>

- 1) номинальное выходное напряжение при питании Контроллера по каналу PoE: 12±0,5 B;
- 2) номинальное выходное напряжение при питании Контроллера по каналу AUX: $(U_{AUX}-1)$ B, но не более 13,4 B;
 - 3) максимальный выходной ток не более 0,3 А;
- 4) встроенная защита от перегрузки по току и превышения уровня выходного напряжения больше 13,5 B;
 - 5) гарантированная работа на ёмкостную нагрузку не более 150 мкФ.

Программируемые ключи в схеме организации выходного питания обеспечивают возможность пользователю управлять выдачей питания через WEB-интерфейс, а также запрещают подачу питания на внешние устройства пока Контроллер находится в режиме загрузки ПО.

Доступная для настройки логика работы программируемых ключей:

- 1) Настройка по умолчанию выключен всегда.
- 2) Пользовательская настройка включен или выключен (независимо для каждого ключа).

Выходы PWR5 и PWR12 оснащены встроенной защитой от превышения максимально допустимого тока потребления (включая короткое замыкание) и от подачи напряжения выше установленного уровня.

При превышении максимально допустимого тока потребления (в том числе при коротком замыкании) на выходах PWR5 и PWR12, питание автоматически отключается, а при восстановлении тока до рабочего уровня (отсутствии короткого замыкания) работоспособность источников питания восстанавливается автоматически. При этом единичная перезагрузка Контроллера при срабатывании защиты на выходе PWR12 считается нормой.

2.4.2 Программно-определяемые порты вход/выход DIO

Программно-определяемые порты вход/выход (далее — DIO) в количестве пяти штук имеют одинаковую аппаратную реализацию. Режим работы порта DIO настраивается пользователем через WEB-интерфейс Контроллера. По умолчанию DIO находятся в режиме "вход" (DI), данный режим сохраняется и в момент запуска устройства, пока ПО Контроллера не будет загружено и готово к работе, вне зависимости от установленных пользовательских настроек. Эквивалентная схема входного и выходного каскада DIO показана на рисунке 2.7.

Технические характеристики DIO в режиме "вход" (DI):

- 1) тип входа «Pull-Up» (вход "подтянут" к линии питания +3,3 В, таким образом, обеспечивается стабильный уровень логической «1» при отсутствии внешнего сигнала);
- 2) максимальный ток входа в режиме DI (вытекающий), он же ток «смачивания» «сухого» контакта при прямом подключении потенциала земли (GND) не более 1 мА;
 - 3) максимальное входное напряжение не более 48 В постоянного тока;
- 4) интерпретируемые логические уровни в зависимости от подключённого к входу в режиме DI потенциала ($U_{\rm BX}$):

```
U_{BX} \le 0.5 \; B — логический «0»; 
 2 \; B \le U_{BX} \le 48 \; B — логическая «1»; 
 0.5 \; B \le U_{BX} \le 2 \; B — неопределенное состояние.
```

Технические характеристики DIO в режиме "выход" (DO):

- 1) тип выхода «Open Drain» (открытый сток);
- 2) максимальный ток выхода в режиме DO (втекающий), он же ток нагрузки, не более 0,3 A;
 - 3) максимальное коммутируемое напряжение нагрузки не более 48 В постоянного тока.

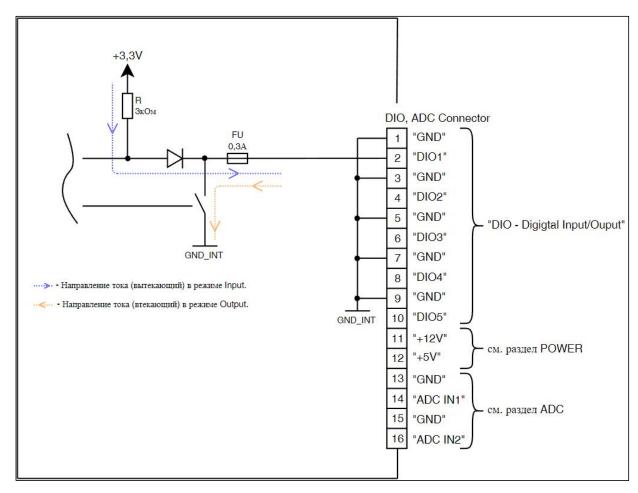


Рисунок 2.7 – Эквивалентная схема входного и выходного каскада DIO

Режим DI поддерживает подключение различных датчиков с выходом типа «сухой» контакт (датчик открытия двери, датчик вибрации, датчик и/или кабель протечки и т.п.).

По умолчанию на контакте любого из DI присутствует напряжение плюс 3,3 В внутренней цепи «Pull-Up», Контроллер определяет такое состояние как логическую «1», при подключении к DI потенциала ниже или равного плюс 0,5 В, интерпретируемое Контроллером состояние изменяется на логический «0», что служит сигналом о том, что произошло срабатывание подключенного датчика (с нормально-разомкнутым контактом).

Пример подключения датчиков к входу в режиме DI показан на рисунке 2.8. При подключении датчиков с HP или H3 контактами, один из этих контактов должен быть обязательно соединен с контактом GND того же разъема, что и DI (цепь "GND_INT" на эквивалентной схеме). Подключение датчика с нормально-замкнутым контактом идентично подключению датчика с контактом нормально-разомкнутым, разница в том, что в момент срабатывания датчика интерпретируемое Контроллером состояние будет изменяться из «0» в «1».

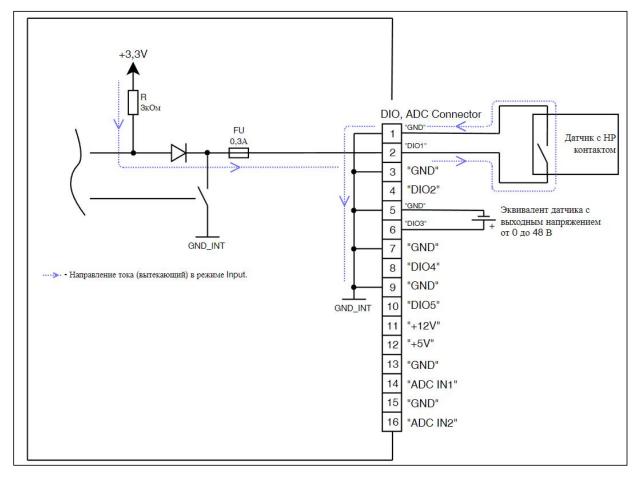


Рисунок 2.8 – Эквивалентная схема подключения датчика с НР контактом

Режим DO позволяет управлять включением и/или отключением внешних нагрузок с напряжением питания не более 48 В и током потребления не более 0,3 А (например, розетки SNR-SMART, реле, сирены тревоги и т.п.) методом коммутации (подключение/отключение) общего провода. Эквивалентная схема подключения нагрузки к DO представлена на рисунках 2.9, 2.10. При использовании внешнего источника для питания нагрузки следует объединить общий провод ("землю") источника и Контроллера.

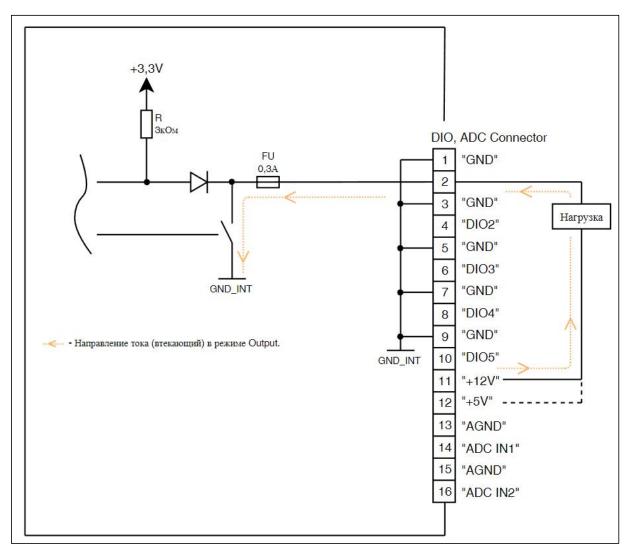


Рисунок 2.9 – Эквивалентная схема подключения нагрузки в режиме DO

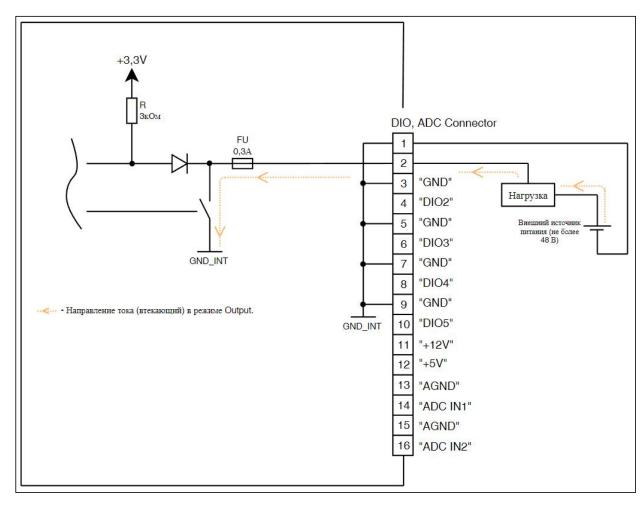


Рисунок 2.10 – Эквивалентная схема подключения нагрузки в режиме DO с внешним источником питания

DIO имеют встроенную защиту:

- 1) от превышения максимального напряжения (не более 48 B) напряжение срабатывания 65 B;
 - 2) от перегрузки по току (не более 0.3 A) ток срабатывания 0.6 A.

В момент срабатывания любой из защит самовосстанавливающийся предохранитель FU разорвёт выходную цепь и предотвратит выход Контроллера из строя.

Не допускается подключать к DIO источник питания с выходной мощностью более 200 Вт.

2.4.3 Аналоговый вход АІ

Аналоговый вход (далее – AI) обеспечивает возможность измерения уровня постоянного напряжения или силы тока. Контроллер содержит два идентичных между собой AI. Эквивалентная схема организации AI показана на рисунке 2.11.

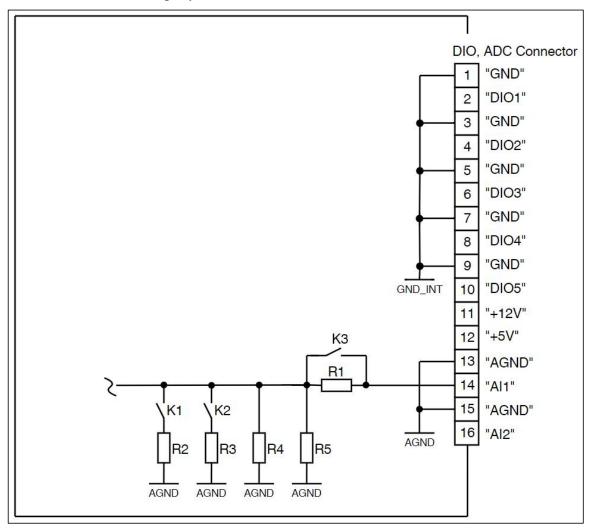


Рисунок 2.11 – Эквивалентная схема организации AI

<u>Технические характеристики AI:</u>

- 1) диапазон измерений напряжения от 0 до 76 В постоянного тока;
- 2) максимально допустимое напряжение на входе AI 76 B;
- 3) входное сопротивление AI не менее 78,7 кОм;
- 4) диапазон измерений тока от 0 до 20 мА (соответствует интерфейсу "токовая петля");
- 5) относительная погрешность измерений не более 1 % в нормальных условиях (температура окружающей среды плюс 25 °C, влажность не более 80 %).

<u>АІ в режиме работы «измерение напряжения».</u> Входной каскад образован программноуправляемым резистивным делителем, коэффициент деления которого определяется автоматически за счет программно-управляемых ключей К1, К2 и не требует участия пользователя. Превышение на входе АІ уровня напряжения более чем 77 В сопровождается предупреждением в WEB-интерфейсе.

AI содержит встроенную защиту от кратковременного (импульсного) превышения максимально допустимого уровня входного напряжения, уровень срабатывания защиты $\approx 80~\mathrm{B}$. Долговременное воздействие напряжения, превышающего порог срабатывания защиты, может привести к выходу из строя AI. Эквивалентная схема подключения к AI в режиме «измерение напряжения» показана на рисунке 2.12.

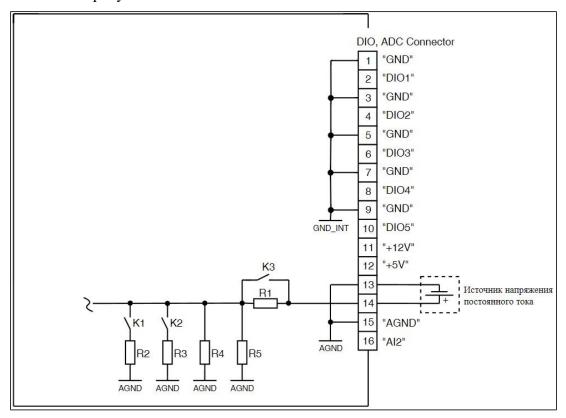


Рисунок 2.12 – Эквивалентная схема подключения к AI в режиме «измерение напряжения»

АІ в режиме работы «измерение тока». Ключ КЗ замкнут и входной каскад образован измерительным шунтом R4||R5. Повышение на входе АІ тока более, чем ЗЗ мА сопровождается предупреждением в WEB-интерфейсе. Абсолютная погрешность измерений не более 1 мА в нормальных условиях (температура окружающей среды плюс 25 °C, влажность не более 80 %). Эквивалентная схема подключения к АІ в режиме «измерение тока» показана на рисунке 2.13.

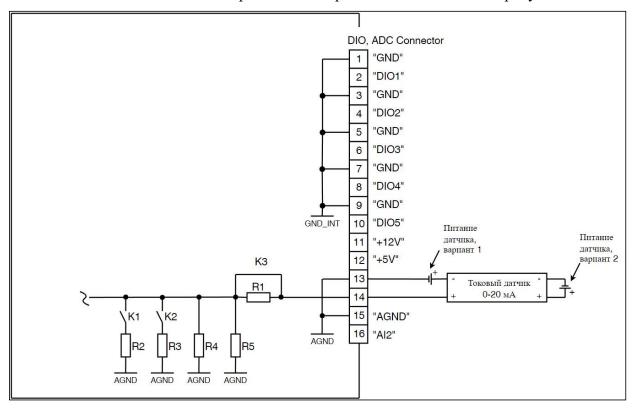


Рисунок 2.13 – Эквивалентная схема подключения к AI в режиме «измерение тока»

Примечания:

- 1. АІ не имеет гальванической развязки.
- 2. Так как **AI не является сертифицированным средством измерения**, предварительная калибровка не требуется.
- 3. Контакты AGND не являются силовыми и могут быть использованы только в качестве опорных при подключении входных сигналов AI.

ВНИМАНИЕ! Попытка подключения к AGND питания датчиков или исполнительных устройств может привести к выходу из строя Контроллера.

2.4.4 Контактная группа реле

Контактная группа реле (далее – Relay) реализована на встроенном программноуправляемом реле с конфигурацией контактов SPDT (реле имеет один общий контакт, который в зависимости от управляющего сигнала замыкается либо с одним, либо с другим из двух выходных контактов, обеспечивая переключение электрической цепи между двумя направлениями).

Обозначения контактов реле:

- REL COM общий контакт (Common);
- REL NO нормально-разомкнутый контакт (Normally Open) соединен с СОМ, когда когда по катушке реле течет ток;
- REL NC нормально-замкнутый контакт (Normally Closed) соединен с COM, когда реле обесточено.

Доступ к управлению осуществляется через WEB-интерфейс.

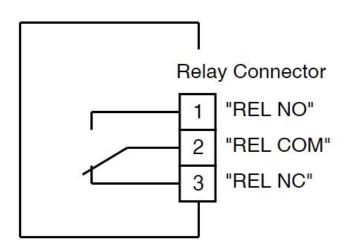


Рисунок 2.14 – Контактная группа реле

Технические характеристики Relay:

- 1) максимально допустимое значение коммутируемого напряжения между контактами REL COM-REL NC 242 В (действующее) переменного или 28 В (амплитудное) постоянного тока;
- 2) максимально допустимое значение коммутируемого тока между контактами REL COM-REL NO – не более 10 A (AC/DC);
- 3) максимально допустимое значение коммутируемого тока между контактами REL COMREL NC не более 5 A (AC/DC).

2.4.5 Аналоговый выход DAC

Аналоговый выход (далее — DAC) служит программно-регулируемым источником напряжения постоянного тока. Доступ к регулировке осуществляется через WEB-интерфейс. Контроллер содержит два идентичных между собой DAC. На рисунке 2.15 показана эквивалентная схема выходного каскада DAC.

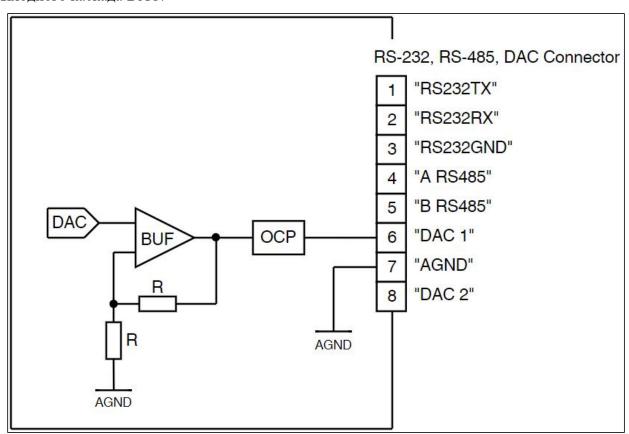


Рисунок 2.15 – Эквивалентная схема выходного каскада DAC

<u>Технические характеристики DAC:</u>

- 1) диапазон выходного напряжения от 0 до 10 В;
- 2) относительная погрешность не более 1 %;
- 3) максимальный выходной ток 20 мА;
- 4) ток короткого замыкания не более 35 мА;
- 5) сопротивление выхода не более 60 Ом.

DAC позволяет управлять внешними устройствами при помощи аналогового сигнала заданного значения. Имеет встроенную схему защиты от перегрузки по току, а также защиту от превышения максимально допустимого уровня напряжения на выходе (не более 15 В).

2.4.6 RS-232

RS-232 выполнен изолированным (5 кВ) от остальной части Контроллера и обеспечивает гарантированную связь с подключенным устройством на расстоянии до 15 м с максимальной скоростью передачи данных не менее 115200 б/с, при условии что используется специализированный экранированный кабель и общая ёмкость линии передачи не превышает 2500 пФ. На рисунке 2.16 показана эквивалентная схема RS-232 совместно с RS-485.

В режиме работы «Конвертер интерфейсов Ethernet → RS-232» передача данных обеспечивается без внесения изменений в передаваемые данные. Данный режим может использоваться одновременно с режимом «Конвертер Ethernet → RS-485».

2.4.7 RS-485

RS-485 выполнен изолированным (5 кВ) от остальной части Контроллера и обеспечивает гарантированную связь с подключенным устройством на расстоянии до 1200 м с максимальной скоростью передачи данных не менее 9600 б/с, при условии что используется экранированный кабель типа "витая пара" категории не ниже 5. На рисунке 2.16 показана эквивалентная схема RS-485 совместно с RS-232.

В режиме работы «Конвертер интерфейсов Ethernet → RS-485» передача данных обеспечивается без внесения изменений в передаваемые данные. Данный режим может использоваться одновременно с режимом «Конвертер Ethernet → RS-232».

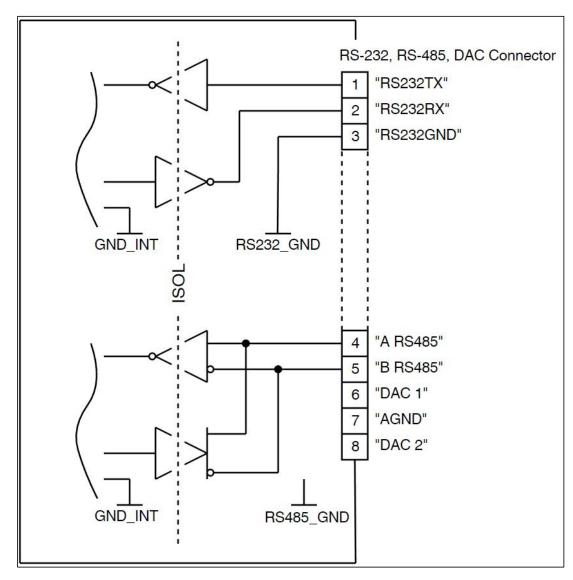


Рисунок 2.16 – Эквивалентная схема RS-232 и RS-485

2.4.8 1-Wire

Доступ к шине 1-Wire реализован через розетку RJ-12 (6р6с) "1-Wire", назначение контактов ответной части (вилки RJ-12) приведено на рисунке 2.17. Рекомендуемый для использования кабель — 2-х парный UTP категорией не ниже 5, рекомендуемое расключение парных проводников в кабеле при прокладке линии показано на рисунке 2.18 и в пояснениях к нему, в качестве примера приведено подключение к датчику Dallas 18b20 и эквивалентная схема подключения подчиненного (slave) устройства.

Технические характеристики 1-Wire

- 1) максимальное количество поддерживаемых устройств не более 10 шт.;
- 2) максимальная длина шины не более 100 м с ответвлениями не более 2 м;
- 3) поддерживаемое напряжение питания подключаемых устройств +5 В или +12 В;
- 4) максимальный ток не более 0.6 A по линии +5 B или 0.25 A по линии +12 B.

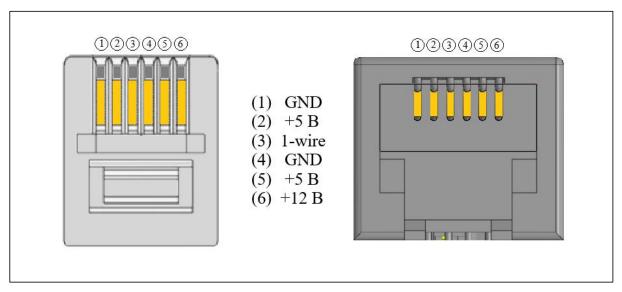


Рисунок 2.17 – Назначение контактов ответной вилки RJ-12 для подключения к шине 1-Wire

¹Не является ограничением. В случае, если требуемое напряжение питания подключаемого устройства отлично от поддерживаемого, для обеспечения работоспособности можно использовать внешний источник питания.

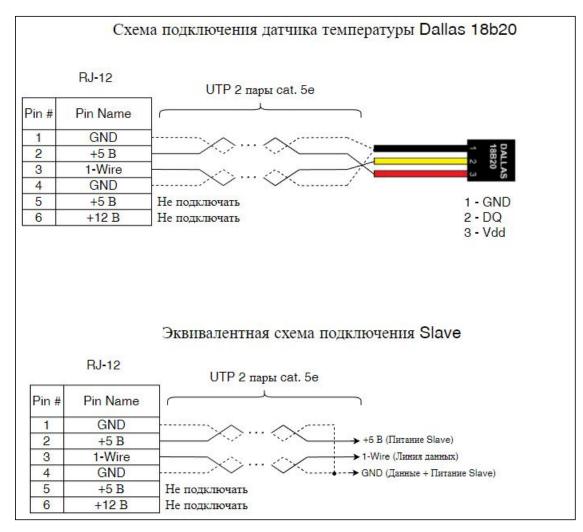


Рисунок 2.18 – Рекомендуемое расключение парных проводников в кабеле

При использовании 4-х парного UTP кабеля все неиспользуемые провода/пары требуется объединить на обоих концах кабеля и подключить к GND на стороне подключения датчика и/или Контроллера. При использовании экранированного UTP экран также должен быть подключен к GND. Контакты № 5 и 6 разъема 1-Wire Контроллера могут быть использованы при необходимости подключить дополнительное питание к подчиненному (slave) устройству, в таком случае каждый из контактов должен быть подключён в паре с GND, по аналогии с контактами № 1 и 2.

2.4.9 Ethernet

Доступ к интерфейсу Ethernet реализован через розетку RJ-45 (8P8C) по стандартам $10/100 \mathrm{Base-T.}$

Интерфейс Ethernet обеспечивает:

- 1) питание Контроллера по технологии РоЕ в соответствии с IEEE 802.3at (подробнее см. подраздел 2.3);
 - 2) доступ к Web-интерфейсу Контроллера.

На розетке Ethernet имеется индикация состояния интерфейса и наличия питания PoE (таблица 1.4).

2.4.10 LTE модем

Предназначен для использования в качестве основного или резервного канала связи (только в исполнениях Контроллера SNR-ERS201x).

Технические характеристики:

- 1) тип антенного коннектора SMA;
- 2) формат поддерживаемых SIM NanoSIM 2 шт.;
- 3) поддерживаемые диапазоны:
 - $-\,LTE-FDD:\,B1/B2/B3/B4B/B5/B6/B7/B8/B13/B17/B18/B19/B20/B25/B26/B28/B66;$
 - LTE-TDD: B34/B38/B39/B40/B41;
 - GSM: 850/900/1800/1900.
- 4) мощность передатчика:
 - LTE-TDD: Class3 (23 dBm $^{+1}_{-3}$ dB $^{+1}_{dB}$);
 - LTE-FDD: Class3 (23 dBm \pm 2 dB);
 - GPRS: Class12 (33 dBm \pm 2 dB).

Для использования LTE модема необходимо подключить антенну (из комплекта поставки) и установить минимум одну из SIM-карт (SIM1 или SIM2 — не имеет значения), руководствуясь указаниями раздела п. 2.2.4 настоящего РЭ.

3 Техническое обслуживание и ремонт

3.1 Общие указания и меры безопасности

3.1.1 К монтажу и работе с Контроллерами допускается квалифицированный персонал, изучивший данное руководство и имеющий группу по электробезопасности не ниже второй.

3.2 Порядок технического обслуживания

- 3.2.1 Техническое обслуживание необходимо проводить с периодичностью не реже, чем один раз в 12 месяцев, с целью профилактики неисправностей Контроллера.
 - 3.2.2 Техническое обслуживание должно включать в себя:
 - 1) проверку надёжности и состояния контактных соединений;
 - 2) очистку корпуса от пыли и грязи.
- 3.2.3 В процессе технического обслуживания запрещено вскрывать корпус Контроллера, а также использовать воду для удаления загрязнений.

3.3 Текущий ремонт

- 3.3.1 Текущий ремонт неисправного Контроллера производится на предприятии-изготовителе Контроллера или в авторизированных ремонтных центрах.
- 3.3.2 Выход Контроллера из строя в результате несоблюдения потребителем правил монтажа или условий эксплуатации не является основанием для рекламации и гарантийного ремонта.
- 3.3.3 Контроллер должен передаваться для ремонта в собранном и чистом виде, в комплектации, предусмотренной технической документацией.
- 3.3.4 Претензии принимаются только при наличии приложенного рекламационного акта с описанием возникшей неисправности.
- 3.3.5 Изготовителем Контроллера является ООО «НАГТЕХ». Адрес изготовителя: 620110, Свердловская обл., г. Екатеринбург, ул. Краснолесья, д. 12A, офис 507.

Сайт: https://nagtech.systems/

3.3.6 Гарантийный и постгарантийный ремонт устройства осуществляет сервисный центр ООО «НАГ». По вопросам технической поддержки и гарантийного ремонта обращаться на сайт:

https://www.nag.support/

3.3.7 Техническая документация и программное обеспечение для Контроллеров SNR-ERS20xx доступны на сайте:

https://data.nag.wiki/SNR-ERS/Controllers/2000/

4 Хранение

- 4.1 Контроллер должен храниться в упаковке изготовителя. Упаковка спроектирована таким образом, что обеспечивает сохранность внешнего вида и работоспособности Контроллера при хранении в отапливаемых складах (хранилищах) с кондиционированием воздуха. Условия хранения должны соответствовать следующим требованиям:
 - температура окружающей среды от 0 °C до плюс 50 °C;
- относительная влажность воздуха не более 95 % при температуре 25 °C (без образования конденсата).

5 Транспортирование

- 5.1 Транспортирование Контроллера должно осуществляться в упаковке изготовителя любым видом закрытого транспорта (ж/д вагоны, закрытые автомашины, трюмы, контейнеры, отапливаемые герметизированные отсеки воздушного транспорта и т.д.) с соблюденим следующих условий:
 - а) температура окружающей среды во время транспортирования должна быть от минус 50 °C до плюс 70 °C;
 - б) относительная влажность воздуха не более 95 % при температуре 25 °C (без образования конденсата).

6 Утилизация

- 6.1 Контроллер соответствует IV классу опасности (малоопасные).
- 6.2 Процесс утилизации должен быть организован с учётом требований ГОСТ Р 55102-2012.