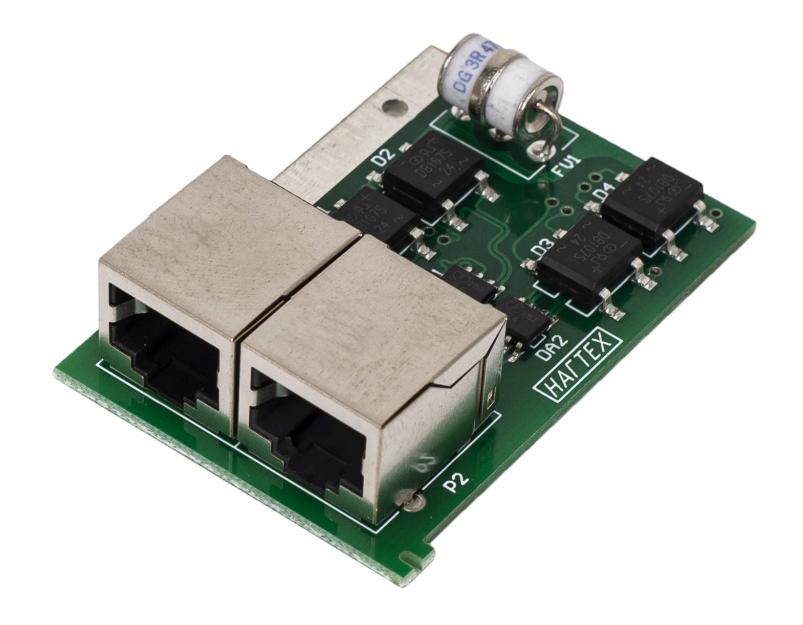


Каталог продукции грозозащиты



SNR-SPNet

Устройства защиты от импульсных перенапряжений

Серия устройств защиты от импульсных перенапряжений (УЗИП, грозозащита) для медных Ethernet-портов активного сетевого оборудования.

Совместное применение:

Коммутатор абонентского доступа

Абонентское оборудование

Камера видеонаблюдения

Wi-Fi-точка доступа или маршрутизатор (в том числе с РоЕ)

Причины возникновения перенапряжений

- Разряды атмосферного электричества (молнии) являются мощными источниками электромагнитных импульсов
- Ионизированный воздух во время разряда становится проводником, а длина молнии (канала разряда) может достигать нескольких километров

Физика воздействия молнии на линии связи

- Электромагнитная волна от молнии наводит помехи в линиях связи
- Типы помех: Синфазные (между проводниками и землёй), Дифференциальные (между проводниками в паре)

Принцип работы защиты SNR-SPNet

- Фильтрация обоих типов помех (синфазных и дифференциальных)
- Обеспечение стабильной защиты линии передачи данных

Защита портов

• УЗИП применяются для защиты медных портов Ethernet, поддерживающих передачу данных 10/100/1000 Мбит/с. и технологиию питания по POE: af, at, bt, Passive POE

Типовая установка

УЗИП устанавливаются с двух сторон симметричной кабельной линии (в непосредственной близости защищаемого порта), длиной более 10 метров. Для эффективной работы УЗИП и исключения токовых петель, кабели заземления устройств защиты, должны быть соединены с общим контуром заземления.

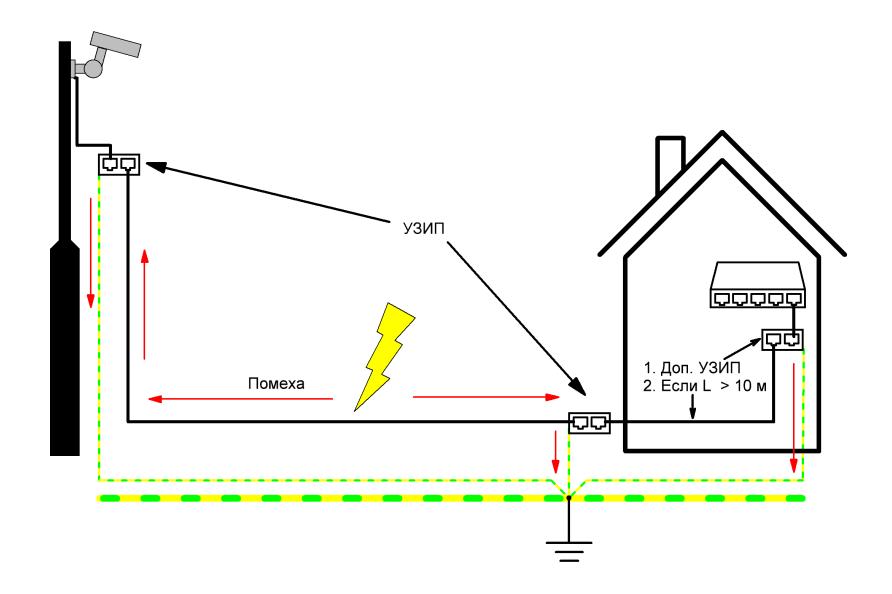


Рисунок 1. - Правильная организация защитного заземления

Правильный вариант установки УЗИП

- Провода заземления УЗИП подключены к одному контуру заземления;
- Устройство защиты установлено не далее 2х метров от защищаемого порта Ethernet;
- Перед вводом в здание установлен дополнительный модуль УЗИП.

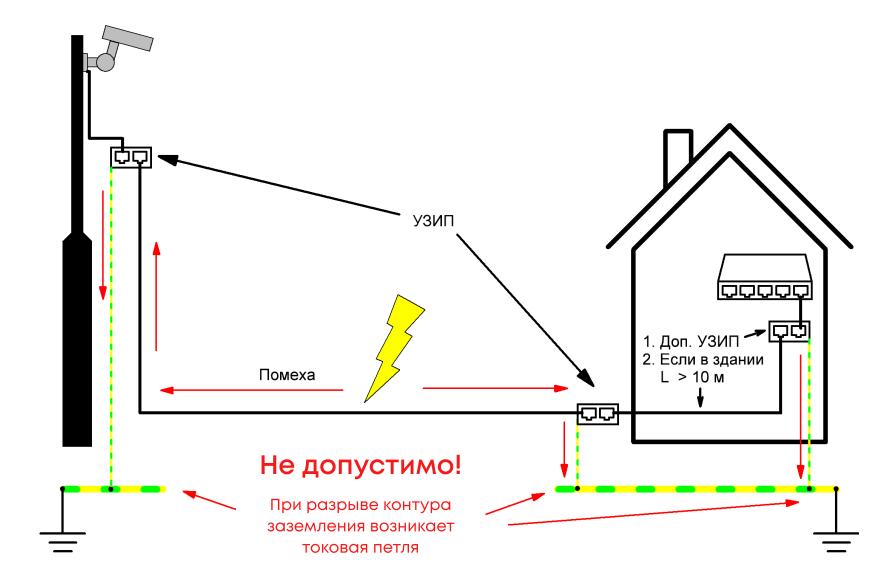


Рисунок 2. Не правильная организация защитного заземления

Не правильный варинат установки УЗИП:

• УЗИП подключены к разным контурам заземления.

Описание уровней защиты от помех

Base (B)

Базовый модуль. Обеспечивает защиту только от синфазной помехи. Линии защищаются от синфазной помехи одним общим разрядником, подключённым к каждой из пар через диодные мосты.

Base Plus (BP)

Обеспечивает защиту синфазной и дифференциальной помехи. Линии защищаются от синфазной помехи одним общим разрядником, подключённым к каждой из пар через диодные мосты. Версию ВР отличает от версии В наличие супрессорных сборок, между проводниками пар, что позволяет реализовать защиту от дифференциальной помехи.

High End (HE)

Реализованы защиты от синфазной и дифференциальной помехи. В версии НЕ каждый проводник в линии связи защищается отдельным разрядником. Такая схемотехника меньше вносит паразитную ёмкость в линию. Не оказывает влияние на полезную длину линии на скорости 1000 Мбит/с.

Типовая установка

Base (B)

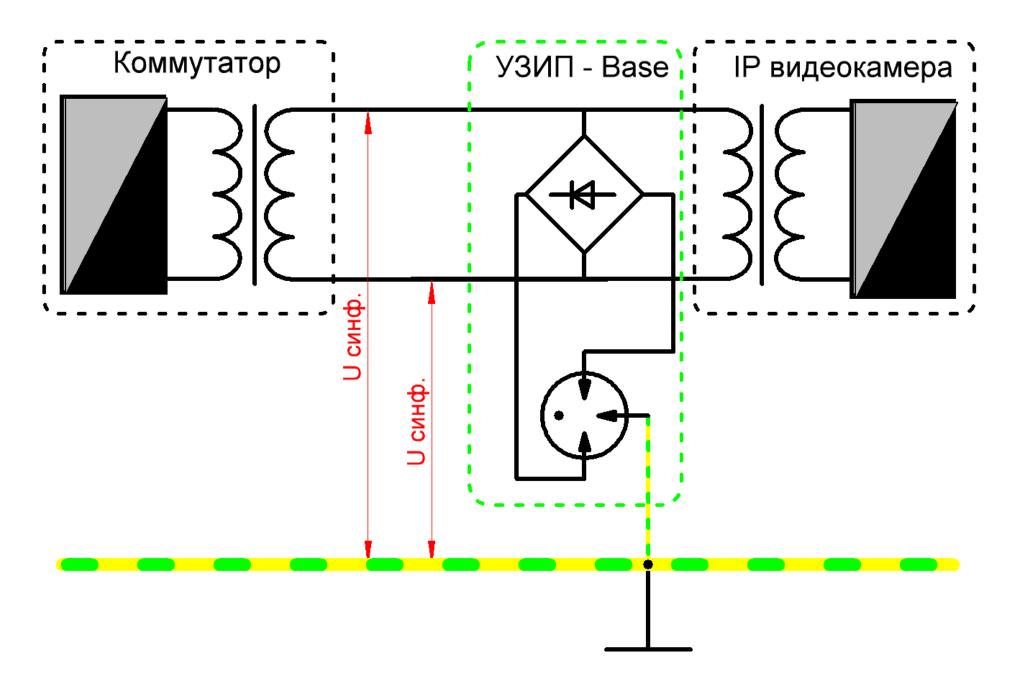
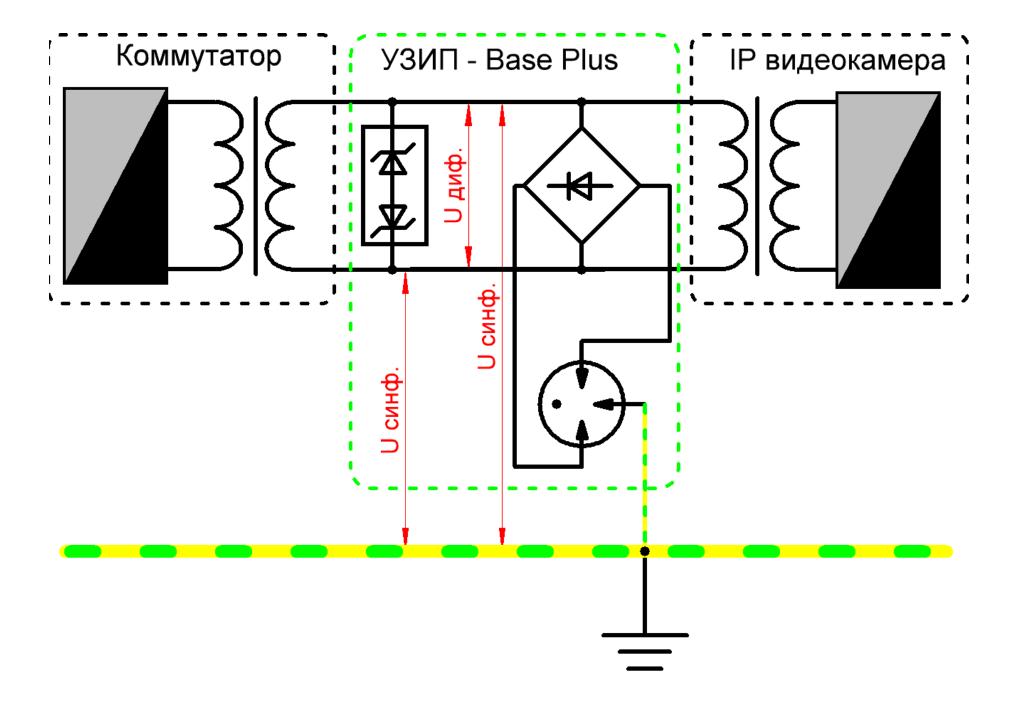



Рисунок 3. - Схема УЗИП версии Base

Base Plus (BP)

High End (HE)

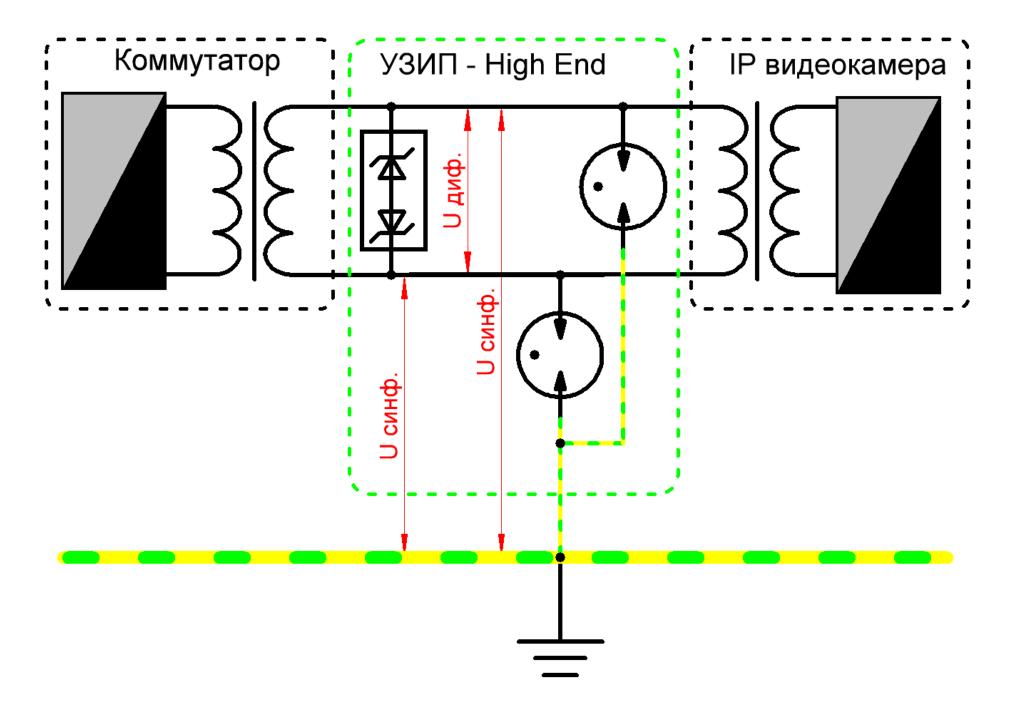


Рисунок 4. - Схема УЗИП версии Base Plus

Рисунок 5. Схема УЗИП версии High End

Возвратные потери, дБ

Сравнительная таблица В BP HE Количесиво защищаемых портов Максимально длительное рабочее 2,8 5.5 напряжение (Линия – линия), В 470 Уровень напряжения защиты (Линия - РЕ), В 470 470 Возврат в исходное состояние после 400 400 400 импульса, нс Устойчивость к переменному току, 5 (Линия - РЕ), А Номинальный разрядный ток 30 2.5 (Линия – линия), А Номинальный разрядный ток (Линия – РЕ), кА 5 5 5 Импульсный разрядный ток (Линия – РЕ), кА 1 1 5 40 5 Суммарный разрядный ток, кА Время срабатывания (Линия – линия), нс <1 <1 Время срабатывания (Линия – РЕ), нс <600 <600 <600 Режим повреждения (Линия – линия) Режим 2 Режим 1 Режим повреждения (Линия – РЕ) Режим 1 Режим 1 Режим 2 125 125 250 Полоса частот, МГц 13 0.1 18 Емкость, пФ (Линия – линия) Емкость, пФ (Линия – РЕ) 2 4 <3 Потери при вводе, дБ Перекрёстная наводка <35 <35 <35 на передающем конце, дБ

5

5

2

Сравнительная таблица УЗИП

	В	ВР	HE
Вносимые потери, дБ	5	5	1
Скорость передачи данных, Мбит/с	1000 (При линии до 75 м) 100/10 (При линии до 100 м)	1000 (При линии до 50 м) 100/10 (При линии до 100 м)	10/100/1000 (При линии до 100 м)

Режимы повреждения при перенапряжении

Режим 1

условие, при котором часть УЗИП, ограничивающая напряжение, отключилась. Функция ограничения напряжения не действует, но линия остаётся работоспособной;

Режим 2

условие, при котором часть УЗИП, ограничивающая напряжение, накоротко замкнута очень малым полным сопротивлением внутри УЗИП. Линия неработоспособна, однако оборудование остаётся защищённым коротким замыканием.

Шасси

Модули

SNR

Шасси защиты от импульсных перенапряжений

SNR-SPNet-PRM24

Шасси SNR-SPNet-PRM24 позволяет разместить в одном юните телекоммуникационного шкафа или стойки 19" до 24 модулей УЗИП.

Посмотреть на сайте

SNR-SPNet-PRM4

Шасси SNR-SPNet-PRM4 позволяет разместить в одном юните телекоммуникационного шкафа или стойки 10" или 19" от 4 до 8 модулей (при парном использовании) УЗИП. Все варианты монтажа устройтсва доступны в паспорте.

Посмотреть на сайте


Модули защиты от импульсных перенапряжений для установки в шасси

SNR-SPNet-B1000

Посмотреть на сайте

SNR-SPNet-BP1000

Посмотреть на сайте

SNR-SPNet-HE1100

Посмотреть на сайте

Бескорпусные УЗИП в корпусе

Степень защиты IP20, установка на DIN-рейку

SNR-SPNet-B1010-IP20

SNR-SPNet-BP1010-IP20

SNR-SPNet-HE1010-IP20

Посмотреть на сайте

Розетка - розетка

SNR-SPNet-B1001-IP10 SNR-SPNet-BP1001-IP10 SNR-SPNet-HE1001-IP10

Посмотреть на сайте

Розетка - патчкорд

SNR-SPNet-B2001-IP10 SNR-SPNet-BP2001-IP10 SNR-SPNet-HE2001-IP10

Посмотреть на сайте

Степень защиты IP54, установка на плоские поверхности

SNR-SPNet-B1031-IP54

SNR-SPNet-BP1031-IP54

SNR-SPNet-HE1031-IP54

Посмотреть на сайте

Степень защиты IP54, установка на трубостойку или плоские поверхности

SNR-SPNet-B1041-IP54

Посмотреть на сайте

Дополнительно

Модуль в корпусе, степень защиты IP65 (по заказу доступны в версии IP68)

SNR-SPNet-B1231-IP65

SNR-SPNet-BP1231-IP65

SNR-SPNet-HE1231-IP65

Посмотреть на сайте

УЗИП с гальваноразвязкой, степень защиты IP10

Не поддерживает технологию РОЕ.

SNR-SPD-1.1G

Посмотреть на сайте

Вариант правильного расположения UTP кабелей

При прокладке кабелей UTP нужно соблюдать правило: Входящая линия (на которую воздействует перенапряжение) и исходящая линия (между УЗИП и защищаемым портом) должны быть разнесены в пространстве. Не должны прокладываться рядом, параллельно в одном кабельном органайзере.

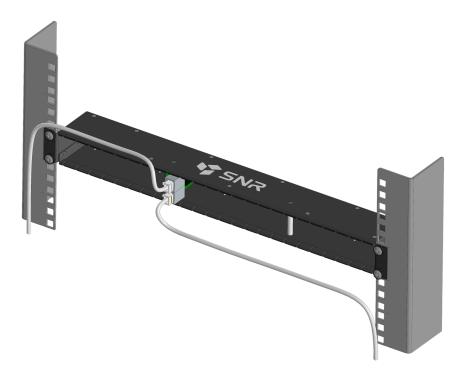


Рисунок 6. - Вариант правильного расположения UTP кабелей

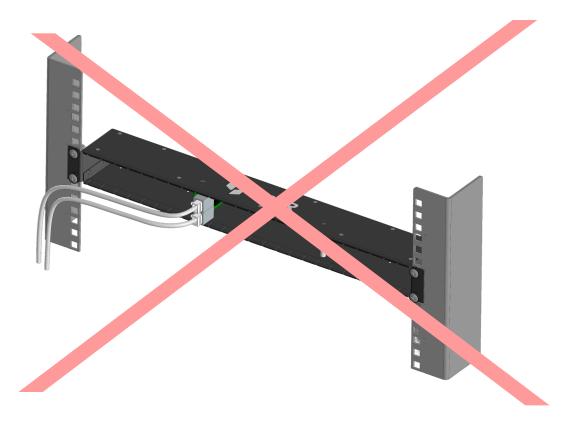
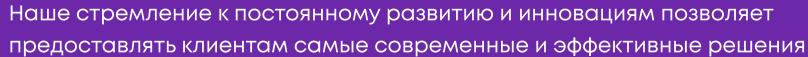


Рисунок 7. - Вариант не правильного расположения UTP кабелей

Важная информация

Памятка по монтажу УЗИП и прокладке UTP кабелей


- Рекомендуется устанавливать УЗИП на каждый защищаемый порт активного сетевого оборудования.
- Не допускается использование зануления вместо заземления.
- Не допускается использование двух и более разных контуров заземления для одной линии.
- Не допускается использование молниеотводов в качестве заземления для грозозащиты.
- Заземление активного оборудования и грозозащиты должно выполняться на одну шину заземления, в идеале на одну точку. Иначе возможно образование токовой петли из-за разности потенциалов между заземлением активного оборудования и заземлением грозозащиты.
- Не допускается располагать провод заземления грозозащиты рядом с кабелем UTP который соединяет порт активного оборудования и порт грозозащиты.
- Грозозащиты вносят затухание в линию. Параметры вносимого затухания указаны в паспорте устройства.

Окомпании

NAG — ведущий разработчик и поставщик оборудования и решений для телекоммуникационной отрасли, промышленности и бизнеса. За 20 лет работы мы создали множество сетей передачи данных, систем безопасности и дата-центров.

Мы предлагаем широкий ассортимент собственных продуктов и решений под ключ, чтобы удовлетворить потребности наших клиентов:

- Сети передачи данных и корпоративная ИТ-инфраструктура
- Решения для мобильных операторов
- Оптические транспортные сети (DWDM)
- Решения для дата-центров
- Облачные решения и сетевая безопасность
- Голосовые и унифицированные коммуникационные решения

ул. Краснолесья, 12а, 4 этаж +7 343 379 98 38 sale@nag.ru

• Новосибирск

ул. Гоголя, 51 +7 383 251 02 56 ns@nag.ru

• Москва

Семёновская площадь, 1А, БЦ Соколиная гора, 13 этаж +7 343 379 98 38 msk@nag.ru

Санкт-Петербург

Большой Сампсониевский пр-кт, 28/2, оф. 325 +7 812 918 98 38 | +7 812 406 8 100 spb@nag.ru

Ростов-на-Дону

ул. Береговая, 8, оф. 409 +7 863 270 45 21 rostov@nag.ru

